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This study synthesized and characterized Ag-doped ZnO thin films. Doped ZnO powders were synthesized using the sol-gel
method, and thin films were fabricated using the doctor blade technique. The Ag content was determined by optical emission
spectrometers with inductively coupled plasma (ICP plasma). Additionally, X-ray diffraction, Raman spectroscopy, Atomic
Force Microscopy (AFM), diffuse reflectance, and X-ray photoelectron spectroscopy (XPS) measurements were used for
physicochemical characterization. Finally, the photocatalytic degradation of methylene blue (MB) was studied under visible
irradiation in aqueous solution. The Langmuir-Hinshelwood model was used to determine the reaction rate constant of the
photocatalytic degradation. The physicochemical characterization showed that the samples were polycrystalline, and the
diffraction signals corresponded to the ZnO wurtzite crystalline phase. Raman spectroscopy verified the ZnO doping process.
The AFM analysis showed that roughness and grain size were reduced after the doping process. Furthermore, the optical results
indicated that the presence of Ag improved the ZnO optical properties in the visible range, and the Ag-doped ZnO thin films
had the lowest band gap value (2.95eV). Finally, the photocatalytic degradation results indicated that the doping process
enhanced the photocatalytic activity under visible irradiation, and the Ag-doped ZnO thin films had the highest MB

photodegradation value (45.1%), as compared to that of the ZnO thin films (2.7%).

1. Introduction

The high concentration of organic dyes in wastewater has
been a problem; synthetic dyes are recalcitrant compounds
and are not completely degraded by conventional water
treatments [1, 2]. Currently, the search for efficient, cheap,
and green treatment processes for wastewater is a challenge
around the world. In this context, the field of heterogeneous
photocatalysis is aimed at synthesizing materials for the
achievement of solar photodegradation processes (solar
energy as a primary energy source) [3, 4]. Zinc oxide (ZnO)
is a semiconductor frequently used in heterogeneous photo-
catalysis due to its particular properties (e.g., photochromic
resistance, low toxicity, physical and chemical stability, high
electron mobility, and suitable quantum yield) [5, 6]. Despite
the fact that ZnO has been recognized as a promising photo-
catalyst, it has a high band gap value (~3.3eV)—only 4% of
the solar spectrum is effective to activate it. Therefore,
improving the photoresponse of ZnO to longer wavelengths

of the electromagnetic spectrum is the goal to be achieved
for photocatalytic applications under solar irradiation [7].
Different strategies have been reported to extend photore-
sponse of semiconductors into the visible light region: (a)
sensitization with natural and synthetic dyes [8-11], (b)
coupled semiconductors [12-14], (c) surface plasmon reso-
nance [15-18], and (d) doping ZnO structure with metals
and nonmetals [19-21]. Among these, the doping process
can modify the band gap of ZnO, generating electronic state
intragap inside of the semiconductor thus ensuring the
photoactivity redshift; on that topic, different authors have
reported that ZnO changed photoresponse after the doping
process [22].

The sol-gel method is a suitable technique for doping ZnO
with different metals, as it is known that morphological, struc-
tural, optical, and photocatalytic properties rely on the synthe-
sis conditions and the manufacturing method [23-25].
Different transition metals (e.g,, Co*", Ag, Cu?*, and Mn*")
have been used to enhance photophysical and photocatalytic
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FIGURE 1: Synthesis procedure for ZnO and Ag-doped ZnO thin films synthesized by the sol-gel method and deposited by the Doctor Blade

method [33-35].

properties of ZnO [26-29]. Ag has proved its potential in
nanojunction fabrication for photocatalytic applications
[30]. Among transition metals, Ag-doped ZnO powders have
been successfully prepared using controlled precipitation
techniques at low temperature [26].

The insertion of silver into the crystal lattice of ZnO has
received great attention for making the catalyst active under
visible light. In this regard, Yildirim et al. synthesized
silver-doped ZnO and reported that Ag has great affinity in
the substitution of Zn™ ions in the semiconductor crystal
lattice; this effect caused the inclusion of energetic states
within ZnO, which decreased the Fermi level thus modifying
the absorption of the semiconductor towards regions farthest
away from the electromagnetic spectrum [31]. Additionally,
Kakhki et al. reported photocatalytic degradation of toxic
organic dyes under various light radiations [32]. The incor-
poration of Ag into the ZnO structure changes optical
absorption towards regions of lower energy, extending the
photocatalytic activity towards the visible region of the elec-
tromagnetic spectrum. In the present study, Ag-doped ZnO
thin films were sensitized and characterized for photocata-
lytic applications under visible irradiation.

2. Materials and Methods

2.1. Photocatalytic Synthesis and Thin Film Deposition.
The amount of 25 mL of ammonium hydroxide (NH,OH)
(25-35% w/w) reactive grade (Merck) was added to a
250 mL glass beaker; then [Zn(CH,COO),.2H,0] (Merck)
0.500 M was added dropwise at a rate of 1.7mL-min™" for 1
hour, at a temperature of 85°C under constant agitation at
300 rpm. After that, the suspension stood for three days at
room temperature; then, the solid was filtered and dried for
5 hours at 100°C [33, 34]. For the ZnO doping process, a sim-
ilar procedure was used, as previously described, and during
the addition of Zn*" ions, salt [AgNO,] (Merck) was added at

1.0%, 3.0%, and 5.0%. Figure 1 shows the synthesis procedure
for ZnO and Ag-doped ZnO.

The thin films were deposited using the Doctor Blade
method, and the suspension was placed on a 2cm high by
2 cm wide glass [35]. The thin films were heated for 30 minutes
at 90°C to evaporate the solvent, and finally, the sintering pro-
cess was performed at 500°C for 2 hours [34]. Figure 1 shows
the thin film synthesis procedure used in this study.

2.2. Thin Film Characterization. The Ag content was
determined by optical emission spectrometers with induc-
tively coupled plasma (ICP plasma) using a Perkin Elmer
Optima 7300DV spectrometer (Supporting Information).
The physical chemistry properties of the films were studied
by X-ray diffraction, diffuse reflectance spectrophotometry,
and Raman spectroscopy assay. X-ray diffraction patterns
were obtained using a Shimadzu 6000 diffractometer using
Cu Ka radiation (A =0.15406 nm) as an X-ray source with
a diffraction angle in the 26 range (20°-80°). Diffuse reflec-
tance spectra were obtained with a Lambda 4 Perkin-Elmer
spectrophotometer equipped with an integration sphere.
The compositional properties of the materials were studied
by Raman spectroscopy in a DXR device equipped with a
780 nm laser. The morphological properties were studied by
scanning electron microscopy (under an excitation energy
of 5 and 1kV). The metallic content of the films was deter-
mined by plasma emission spectroscopy using the SM 3120
B technique, EPA 3015A, modified for solids. Finally, XPS
measurements were performed on an X-ray photoelectronic
spectrometer (NAP-XPS; brand Specs) with a PHOIBOS
150 1D-DLD analyzer, using a monochromatic source of
Al-K, (1486.7¢€V, 13kV, and 100 W) with energy from the
90eV for the general spectra and 20eV for the high-
resolution spectra. The step was 1eV for the general spectra
and 0.1 eV for the high spectra. A total of 20 measurement
cycles were performed for the high-resolution spectra and 3
for the general spectra.
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2.3. Photocatalytic Test. Methylene blue (MB) was chosen
as the pollutant model in this study. The experiments were
carried out in a batch reactor using a LED tape as a source
of visible radiation (cold white light 17 watts). To reach
adsorption-desorption equilibrium on the catalyst surface,
before irradiation, the MB solution was kept in the dark
for 90 minutes at 250 rpm. Photodegradation was carried
out using 50 mL + 0.025 mL of a MB solution (10 mg-L") sat-
urated with oxygen at pH7.0. The concentration of dye was
determined through the spectrophotometric method (Thermo
Scientific, Genesys 10S) using 665nm as a fixed wavelength,
with a calibration curve (correlation coefficient R =0.997)
for the use of the Lambert-Beer equation.

2.4. Trapping Experiments. The effect of three different scav-
engers was studied to find out a possible mechanism for MB
photocatalytic degradation and the same concentrations
(1.0 x 107> M) of isopropyl alcohol (IPA) (OH* radical scav-
engers) [36], parabenzoquinone (PBQ) (O, "), and potassium
iodide (KI) (an h™ scavenger) [37] were added in separate MB
photocatalytic experiments [38, 39].

3. Results and Discussions

3.1. Raman Study. The wurtzite structure of ZnO belongs to
the space group C*, with two formula units per unit cell,
with 8 vibrational modes for ZnO:A, ; A,; By; B,; 2E; and
2E,, where modes A, and E, are polar, showing different fre-
quencies for transverse (TO) and longitudinal (LO) phonons,
both modes being Raman and infrared active [40]. Figure 2
shows the Raman spectrum of the ZnO thin films. The peak
located at 97.4cm™ is associated to vibrational mode E,;;
the weak signal located at 340 cm™ corresponds to E,y;-E,;,
and the peaks located at 437.0cm™ and 581 cm™ correspond
to vibrational mode A, [41, 42]. The signals located at
274.4cm™" and 512.6 cm ™' do not correspond to the ZnO nor-
mal vibrational mode, but these signals have been associated
with the presence of defects inside the semiconductor net-
work [43, 44]. For the Ag-doped ZnO films with different sil-
ver contents, Figure 2 shows a signal shift located at 581 cm™
towards lower wavenumber values near to 572 cm’™ (the sig-
nal was expanded and moved approximately 9 cm™ towards
lower energy values), and this change can be attributed to
the dispersion contributions of the A ; 5 process outside the
Brillouin area. Zeferino et al. reported that such displacement
and widening of the signal can be attributable to oxygen
vacancies, Zn interstitials, and/or defect complexes in the
ZnO network [45].

3.2. XPS Study. The XPS measurements were conducted to
verify the surface components and valence states of thin
film. Figure 3(a) shows profile XPS spectrum for both ZnO
and ZnO:Ag (5%) thin films; the profile of the sample shows
the typical signals of binding energy corresponding to Zn,
Ag, O, and C elements. The signals located at 1043.4eV,
1020.5eV, 139.0eV, and 88.8 eV correspond to the electronic
transitions of Zn 2p,,,, Zn 2p;,, Zn 3s,,, and Zn 3p;,,
respectively [46]. Figure 3(a) also shows an important signal
at 532.5 eV; this corresponds to the phototransition O 1 s; the
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FIGURE 2: Raman spectrum for both the ZnO and ZnO:Ag thin
films. The Raman vibration modes are shown in the figure, where
# corresponds to defects inside the ZnO structure.
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F1GURE 3: XPS spectrum for both ZnO and ZnO:Ag (5%) thin films.

signal located at 285.0 eV corresponds to electronic transition
of C 1's; this signal is typical of atmospheric CO, absorbed on
the surface. The Ag-doped samples showing the signals at
374.0eV and 368.0eV correspond to the electronic transi-
tions of Ag 3d;,, and Ag 3d,,,, respectively (Figure 3(b),
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FIGURE 4: (a) HRXPS Zn 2p spectrum for both ZnO and ZnO:Ag (5%) thin films and (b) HRXPS Ag 3d spectrum for ZnO:Ag (5%) thin films.
All binding energies of the XPS spectra are calibrated with reference to the Cls peak at 285eV.

red line) [47]. Figure 4(a) plots the HRXPS spectrum for
2p,,, and Zn 2p,,, doublet. Results shows that Zn-2p levels
were found to be shifted to higher binding energies after
the doping process, the binding energy shift was 0.4eV
(Figure 4(a)), these shifts in the binding energies presumably
indicate a change in chemical binding due to dopant atoms,
and similar trends were reported by Shin et al. [48] and
Lupan et al. [49]. Besides, Figure 4(b) plots the HRXPS
spectrum of Ag 3ds, and Ag 3d;, double peaks, which
are centered at 368.0 and 374.0eV, respectively, and the
splitting of the 3d doublet was 6.0 eV suggesting that silver
was in metallic nature into ZnO thin films [50, 51].
Thomas et al. and Khosravi-Gandomani et al. have revealed
the presence of two different components, which could be
attributed to either metallic Ag or Ag,O and to an Ag-Zn-
O ternary compound [52, 53]. Thongsuriwong et al. observed
a similar behavior in Ag 3d spectra for Ag-doped ZnO thin
films [54].

3.3. Structural Study. Figure 5 shows the X-ray diffraction
pattern for the ZnO and doped ZnO thin films. The ZnO thin
film pattern shows typical signals for the hexagonal Wurtzite
phase (JCPDS No. 36-1451), with the thin films being poly-
crystalline and the sample presenting a preferential growth
plane at 20 =36.27 corresponding to the crystalline plane
(101)—these results agree with those of other reports [55].
After the doping process, the diffraction patterns preserved
signals of the wurtzite ZnO structure but there was a change
in the intensity of the main diffraction signal, corresponding
to the plane diffraction (101). This behavior is the result of
the Ag doping process, and besides, the change in the
intensities of the diffraction signals was associated to
changes in grain size due to network defects or oxygen
vacancies [56, 57]. Finally, based in Raman spectroscopy,

the XPS, and the structural characterization, these results
suggest that metallic Ag was incorporated into the ZnO.

3.4. Morphological Study. Figure 6 shows AFM images for the
ZnO and ZnO:Ag thin films, and Table 1 shows the rough-
ness and grain size values for the thin films. The results show
that ZnO films are composed of aggregates with size in a
nanoscale range. The surface properties (roughness and
grain size) of the ZnO thin films are affected by the doping
process, in which both roughness and grain size of the films
are greater than the roughness of the Ag-doped ZnO films.
The average size of the grains is smaller than 200 nm, and
the grain size changes in a range of 120 nm to 190 nm—the
thin film grain size decreased after the doping process as a
result of the incorporation Ag’ as a dopant into the ZnO
crystal lattice [58].

3.5. Optical Study. Figure 7(a) shows the diffuse reflectance
spectrum for both the ZnO and the Ag-doped ZnO thin
films. The results show that the ZnO thin films had a high
reflectance of approximately 70% after 370 nm. In the vis-
ible region, reflectance changes as a function of the doping
metal load; reflectance decreases as the metal load increa-
ses—this observation is general for all thin films. Reports
in the literature indicate that the incorporation of dopant
metal into the ZnO crystal lattice decreases the band gap
(Eg). The Eg value is determined using the Kubelka-
Munk function [59]:

(1 _Ro<)2

F(Roc): 2R
oC

, (1)

where R is the material reflectance value and F(R..) rep-
resents the ratio between the absorption and the scatter-
ing coeflicients; F(R,) is proportional to the absorption
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FIGURE 6: AFM images for (a) ZnO, (b) ZnO:Ag 1%, and (c) ZnO:Ag 5% thin films.

TaBLE 1: Roughness and grain size of TiO, and TiO,/sensitizer thin
films.

Thin films Grain size (nm) Roughness (nm)
ZnO 190 184
ZnO:Ag (1%) 130 25.7
ZnO:Ag (5%) 120 36.6

constant of the material, an indication of the sample absor-
bance at a particular wavelength. From Equation (1) and
the curves shown in Figure 5(a), an analogue to Tauc plots
(F(R,)hv)"? against photon energy can be constructed,
according to [60]

(F(Ry)hv)'"* = A(hv - Eg). (2)

Figure 5(b) shows plots of (F(R, )hv)"* versus (hv) for
the diftuse reflectance spectra shown in Figure 5(a). The opti-
cal band gap of the films was determined by extrapolating the
linear portion of the graph onto the x-axis [61]. Table 2 lists
the optical properties for the thin films.

Figure 7(b) shows that the ZnO thin films had a band gap
value of 3.22¢eV, a value that is lower than the Eg value
reported for ZnO (3.37¢eV). This result is associated to
defects or oxygen vacancies inside the ZnO structure. During
ZnO synthesis, oxygen vacancies are the most favorable
defects to form. However, Srikant et al. reported apparent
band gaps for ZnO of 3.1eV and 3.2V due to the existence
of a valence band-donor level transition at ~3.15eV, which
can dominate the absorption spectrum [62, 63]. For the
doped ZnO thin films, the inclusion of Ag modified the semi-
conductor absorption towards lower energy regions of the
electromagnetic spectrum (Table 2). This is associated to
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FIGURE 7: (a) Reflectance diffuse spectra for both ZnO and ZnO:Ag thin films. (b) Kubelka-Munk plots and band gap energy estimation for

both ZnO and ZnO:Ag thin films.

TaBLE 2: Optical and kinetic results for both ZnO:Cu and ZnO:Co
thin films.

Thin film  B2d gap Degradation *Ratio Kypp X 1073
(eV) (%) Dpg.700/Pz00  (min™)
ZnO 3.22 2.7 1.0 0.2
ZnO:Ag 1% 2.95 30.8 13.5 2.7
Zn0O:Ag 3% 3.12 37.5 17 34
ZnO:Ag 5% 3.10 44.8 20.5 4.1

“Degradation (%),0,4,/degradation (%),0.

reduction of the ZnO Fermi level by generation of intragap
states, where these new levels modified the absorption of
the semiconductor towards regions of lower energy of the
electromagnetic spectrum (ZnO:Ag 1%). This result corre-
sponds to results of other reports [64]; however, for films
with a higher percentage of Ag doping (2% and 5%), the opti-
cal band gap was bigger. Shinde et al. reported that when Ag
doping exceeds the doping load, the electron mobility is
diminished due to deformation of the ZnO film structure,
caused by the greater ionic radius of Ag (0.115nm) with
respect to Zn (0.074 nm), which would prevent the optical
response of the material from being improved [65].

3.6. Photocatalytic Study. Figure 8 indicates that the doping
process had a positive effect on the photocatalytic activity
of ZnO under visible irradiation; all the doped samples
had a greater photocatalytic activity than that of the ZnO
films. The degradation percentages of all the samples are
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F1GURE 8: MB photocatalytic degradation for both ZnO and ZnO:Ag
thin films after 140 min under visible light (VL) irradiation.

listed in Table 2. The Ag-doped ZnO thin films (5%) showed
the highest photocatalytic activity. The improvement in the
catalytic activity could be attributed to the fact that the grain
size was smaller than the ZnO thin films, which favored
having an effective surface with larger sites available for
adsorption and, besides that (Table 1), Ag-doped ZnO thin
films had a smaller band gap value (Table 2). In addition,
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silver acts as an electron acceptor, favoring p-type conduction
and decreasing the recombination of charge carriers [45].
The photodegradation kinetics of MB was studied using the
Langmuir-Hinshelwood kinetic expression:

d[AM] _ k x K[BM]

"TTTdr TI+KBM)

3)

where v is the dye mineralization rate, K is the speed
constant, [MB] is the concentration of methylene blue,
and k is the adsorption coefficient. Equation (3) can
be explicitly resolved for (¢) to use discrete changes in [MB]
from the initial concentration to a zero-reference point. In
the present case, an apparent first-order model can be sup-
posed:

d[AM]
a Kapp
[AM] = [AM], &b,

AM] = kK[AM],
[AM] = kK[AM W

where time (t) is expressed in minutes and k,,, (k * K) is the
apparent reaction speed constant (min™'). The kypp values for
synthesized catalysts are listed in Table 2. The results show
that the doping process increased the speed constant from a
value of 2.0 x 10* min™" for the unmodified ZnO thin films
to a value of 4.1 x 10~ min™ for ZnO:Ag 5%—in the best
case, the speed degradation is 20.5 times higher than unmod-
ified ZnO. Both the combined effect of the band gap and
grain size reduction by the doping process explain the
increase of the MB degradation percentage under visible light

irradiation.
Jayswal and Moirangthem reported a k,,, value of 5.9 x

107 min™ for photocatalytic degradation of methyl orange

after 150 min under visible light irradiation using an SnS/ZnO
heterostructure as a photocatalyst [66]. In another study,
Park et al. reported a k,,, value of 2.7 x 10~ min™" for photo-
catalytic degradation of 2,4-dinitrophenol after 140 min
under visible light irradiation using functionalized zinc oxide
tetrapods as photocatalysts [67]. Tiirkyilmaz et al. reported a
kopp value of 7.5 10 min™" for visible light photocatalytic
degradation of tartrazine after 150min using Fe-doped
ZnO as photocatalysts [22]. Kuriakose et al. reported a k,,

value of 2.2 x 10> min™ for MB photocatalytic degradation
after 30 min under visible light irradiation using Cu-doped
ZnO powders as photocatalyst [68]. Although the best k,,
value reported in Table 2 is lower, several practical prob-
lems arise from the use of powder during the photocatalytic
process: (a) separation of insoluble catalyst from suspension
is harder and slower than thin films, (b) suspended particles
tend to aggregate at high concentrations, and (c) suspen-
sions are not easy to apply in continuous flow systems; these
drawbacks increase the costs of practical applications of
photocatalysis [69]. The immobilization of ZnO through
thin films provides an advantage over the drawbacks of
powder suspensions.

Besides, the study determined the recyclability of the
best thin film for MB photodegradation under visible light.
Figure 9 shows the recycling test for of the ZnO:Ag (5%)
thin films. The thin films showed suitable stability after 5
repetitive photocatalysis tests using the same thin film,
after the first cycle the photodegradation yield was reduced
(17%) and in the 5™ cycle the photodegradation yield was
reduced (40%). Finally, recycling results show that after
the doping process, photostability is conserved, indicating
that ZnO:Ag (5%) thin films are suitable as reusable photo-
catalysts for sunlight-driven photocatalytic degradation after
5 cycles.
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3.7. Photodegradation Mechanism. Figure 10 compares the
results of trapping experiments in the presence of different
reactive oxygen species scavengers under visible irradiation
on ZnO:Ag (5%) thin films. The results show that the
effect of the KI scavenger decreases about 27% the photo-
degradation yield, that of the IPA scavenger decreases
about 51% the photodegradation yield, and that of the
PBQ scavenger decreases about 70% the photodegradation
yield. The biggest decrease in photocatalytic yield was
reported for the addition of PBQ, suggesting that O,”
could be the main reactive oxygen species (ROS) driving
the photocatalytic process. After irradiation, O,  can be
generated according to

hyt
Zn0 : Ag+hv gy — Zn0 : Ag ([) ; (5)
€

(€ )+ Osady = 02" (aaps (6)

0,7 (aa) + MB,q) —> MB™ q) — degradation products,
(7)

where cb is the conduction bands of the semiconductor
and iel is the intermediate energy levels generated after
doping process. Under correct electromagnetic irradiation
(E,, = Eg), the semiconductor absorbs this radiation and
one electron can be excited from the doping donor level
to cd of the semiconductor (equation (5)). In solution,
the oxygen molecules adsorbed on the semiconductor
surface prevent recombination by trapping electrons and
this generates superoxide radical anions (equation (6))
[70, 71].

Methylene blue photodegradation proceeds through both
parallel and consecutive reactions, as superoxide radical
anions can react directly with MB (equation (7)). The fact
that the KI scavenger decreases about 19% the photodegrada-
tion yield indicates that holes (h™) can be produced in minor
proportion after visible absorption, and the redox potential of
holes is thermodynamically suitable to oxidize almost any
organic molecule. Charge carrier trapping would suppress
the recombination and increase the lifetime of the separated

International Journal of Photoenergy

electron and hole; other factors such as surface area, crystal-
linity, and trap density can affect the photocatalytic perfor-
mance of the semiconductor [70-72]:

(ha") + H,0,4) — OH ) + H', (8)

(h*) + OH (,9) — OH (g, (9)

(h*) + MB,q) — MB™ ,y) — degradation products,

(10)

OH' 4 + MB 4y — MB™ 4 — degradation products.
(11)

Furthermore, oxidation by holes yields more hydroxyl
radical molecules (equations (8) and (9)). Given that
hydroxyl radicals are powerful oxidizing species, they are
considered important species in the photocatalytic processes.
Finally, MB photodegradation can proceed through both
parallel and consecutive reactions (equations (10) and (11)).

4. Conclusions

This study synthesized and characterized Ag-doped ZnO
thin films. The spectroscopic, morphological, and structural
characterization of the composites was presented in detail.
All results corroborated the doping process; the red shift
in the band gap values was detected after the doping pro-
cess, from 3.22eV (ZnO) to 2.95eV (ZnO:Ag 1%). XPS
indicates that silver was incorporated as Ag’ inside ZnO
after the doping process. Besides, the photocatalysis test
indicated that doped ZnO thin films exhibited higher pho-
tocatalytic activity than ZnO thin films, a behavior that was
attributed to (i) intraband transitions due to dopant inser-
tion inside ZnO and (ii) reduction in grain size. Trapping
experiments reveled that O, was the main ROS generated
after visible light irradiation on ZnO:Ag (5%) thin films.
Finally, in the best case, the photodegradation percentage
for ZnO:Ag (5%) was 16.5 times higher than that for the
unmodified ZnO.
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