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Formulation and existence of weak
solutions for a problem of adhesive
contact with elastoplasticity and
hardening

Ramiro Peñas Galezo

Abstract
This paper presents the weak formulation of a quasi-static evolution model for two deformable bodies with uni-
directional adhesive unilateral contact on which external loads act. Small deformations and linearized elastoplasticity with
hardening are assumed. The adhesion component is rate-dependent or rate-independent according to the choice of the
viscosity coefficient of the glue; elastoplasticity is considered rate-independent. The weak formulation is expressed as a
doubly non-linear problem with unbounded multivalued operators, as a function of internal and boundary displacements,
plastic and symmetric strain tensors, and the bonding field and its gradient. This paper differs from other formulations
by coupling the equations defined inside and on the boundary of the solids in functional form. In addition to this novelty,
we verify the existence of solutions by a path other than that displayed in similar articles. The existence of solutions is
demonstrated after considering a succession of doubly non-linear problems with an unbounded operator, and verifying
that the solution of one of the problems is also a solution to the objective problem. The proof is supported by previous
results from non-linear Partial differential equations theory with monotone operators.
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Introduction

Quasi-static problems of adhesive contact with elasto-
plasticity have focused on energetic solutions, for
example, the case of contact and elastoplasticity with
hardening,1 delamination problems,2,3 the rate-
independent model with damage,4 adhesive contact
with temperature,5 the numerical approach developed
in Panagiotopoulos et al.,6 among others. A novelty of
this document consists of the weak formulation from
standard models of elastoplasticity and adhesion
(which considers interactions between the bonding field
and the displacement on the border), together with the
proof of the existence of weak solutions (without going
into the field of the energetic solutions). We also

obtained an abstract representation of the set of equa-
tions in a single differential inclusion with unbounded
multivalued operators. The problem is described below.

Two deformable solids occupying reference domains
O1, O2 are considered in adhesive contact in a common
region G = ∂O1\∂O2 (see Figure 1). Both solids with a
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boundary G0i
j ∂Oi\G, with prescribed displacement

(ui
jG0i

= 0, i= 1, 2). For each material, we consider a

dissipation potential R : U !� � ‘, +‘� and a stored
energy density W : U !� � ‘, +‘½, where U is a
Hilbert space for e, pð Þ (e is the linearized symmetric
strain tensor and p is the plastic tensor). The elasto-
plastic component is defined by a momentum equation
and a plastic flow rule as a function of W and R. The
treatment in this paper does not include damage and
temperature. We consider a unidirectional (irreversible)
and unilateral (no penetration between solids) adhesive
contact through differential Fremond inclusions on the
contact boundary.7 The bonding field b, the displace-
ments on the boundary ujG and indicator functions

define these differential inclusions. There is extensive
literature on adhesive contact problems in Refs.8–10

among other works.
Doubly non-linear problems have been mainly

addressed by Refs.11–14 The weak model will have the
abstract representation ∂u( z

�
)+ ∂c(z) 3 F, where ∂u

and ∂c are unbounded multivalued monotone opera-
tors. The proof of the existence of weak solutions can-
not be direct since the operators ∂u and ∂c are not
bounded. For this reason, we will construct a sequence
of doubly non-linear problems that present solutions,
and we will prove that one of them also solves the orig-
inal problem. The contributions to be considered in this
work are: the strong monotony proof of ∂c (Theorem
11), the proof of the existence of solutions (Theorem
14), and the weak formulation based on its extended
variables and the loads applied to the interior and
exterior of solids (Theorem 6).

The document has been organized as follows: Section
2 describes the classical formulation of elastoplastic
models and differential inclusions for adhesion. It also
defines the monotone operators, the doubly nonlinear
problems, and presents a theorem of existence and
uniqueness of solutions. Section 3 defines the weak

formulation of the problem, as well as the solution
spaces. Finally, Section 4 demonstrates the existence of
solutions of the weak model. The reader who is not very
interested in the mathematical foundations of the model
can omit the Sections 2.3 and 4 of this document.

Model equations

This section summarizes the basic concepts of elasto-
plasticity and adhesion and displays the constitutive
equations of the model. The elastoplastic model with
hardening that we present follows the variational for-
mulation proposed by Stefanelli15; the notations and
other considerations of the elastoplastic model as a
rate-independent system are taken from Liero and
Mielke.16

Linearized elastoplasticity as a rate-independent
system

Rate-independent systems (RIS17) arise in various phe-
nomena such as elastoplasticity, delamination damage,
fracture propagation, ferroelectricity, among others. In
a RIS problem, any monotonous reparameterization of
the time variable in the solution of the problem solves
the original problem with the respective reparameteri-
zation. Therefore, it does not display an intrinsic time
scale.

Consider two domains Oi � R
3 (i= 1, 2) with

boundary ∂Oi of class C1, and where G0i
� ∂Oi is the

part of the boundary with the Dirichlet condition

u1 = 0onG01

u2 = 0onG02

�
, ð1Þ

and let H1(Oi) :¼ ui 2 H1(Oi)
3 : uijG0i

= 0
n o

. It is

also assumed that meas G0i
ð Þ.0, i= 1, 2, so the pair

Oi,G0i
ð Þ satisfies the Korn’s inequality e(ui)k kL2(Oi)

ø

Figure 1. O1 adhered to O2 in G, with prescribed displacement in G01
,G02

: A figure made with Latex Tikz package.
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CK uik kH1(Oi)
for some CK.0 and all ui 2 H1(Oi),

i= 1, 2.18 Here, e(u)= 1
2
ru+r> uð Þ is the symmetric

tensor of linearized strain.
The elastoplastic properties of each body Oi are pre-

scribed by the stored energy density Wi(e, p), and the
potential of dissipation Ri(e), where:

� e 2 L2(Oi)
3 3 3
sym :¼ L2(Oi;R

3 3 3
sym ),

� p 2 L2(Oi)
3 3 3
dev :¼ L2(Oi;R

3 3 3
dev ),

� R
3 3 3
dev = A 2 R

3 3 3
sym : tr(A)= 0

n o
,

� Wi : L2(Oi)
3 3 3
sym 3 L2(Oi)

3 3 3
dev ! R is continuous

and coercive,
� Ri : L2(Oi;R

3 3 3
dev )! R is continuous, convex

and 1-homogeneous (i.e. R(lp)= lR(p) for all
l.0, which guarantees that the material
response is rate-independent).

The solution of a rate-independent linearized elasto-
plastic problem has to solve the momentum equation

� div(∂eWi(e(u
i), pi))= f i in Oi, ð2Þ

and a differential inclusion called plastic flow rule

0 2 ∂Ri(p
�

i)+ ∂pWi(e(u
i), pi) in Oi, ð3Þ

where ∂Ri(p) is the subdifferential of Ri in p, and fi it is
a density of force per unit volume. Particularly we con-
sider stored energy density to the quadratic functional
(in the isotropic and homogeneous case)

Wi(e, p)=
1

2
C(e� p), (e� p)

� �
+

hi

2
pk k2

=
li

2
(tre)2 +mi e� pk k2 +

hi

2
pk k2,

ð4Þ

i= 1, 2, where C(e)= li

2
(tre)Id + 2me, li, mi are the

coefficients of Lamé and hi a measure for the kinematic
hardening. In this particular case, the stress tensor is
determined by the derivative of the energy functional
concerning the deformation tensor: s= ∂eW (e(u), p).
On the other hand, dissipation potential is considered
as

Ri pð Þ=syield Oið Þ pk k,

where syield is the yield stress. According to (4), we
have to s= l(tre)Id + 2m e� pð Þ 2 R

3 3 3
sym , and

∂pW (e(u), p)= � 2m e� pð Þ+ hp: On the system (2)–
(3), we will assign the boundary conditions

s1N1 = ∂eW1(e(u
1), p1)N1 = g1, on ∂O1nG

s2N2 = ∂eW2(e(u
2), p2)N2 = g2, on ∂O2nG

�
ð5Þ

where Ni denotes the normal external vector to ∂Oi, gi is
a force density per unit area and G= ∂O1 \ ∂O2:

Adhesion

A contact problem with small deformations is a system
of constitutive equations or abstract equations, which
models the deformation of two or more bodies under
load. They can include effects such as damage, adhe-
sion, memory, friction, temperature, and other dissipa-
tive responses. The classic adhesive contact models such
as the one discussed in this paper are idealized cases
that assume cohesive zones independent of time, and
that generally introduce inconsistencies in the model
(see Heitbreder et al.19 for a more in-depth discussion);
However, this analysis is outside the theoretical scope
of this paper as is the thermodynamics associated with
the boundary,20 and instead we will consider the stan-
dard approach of Fremond7 on adhesive contact.

Suppose that O1 and O2 are glued in a common
region of contact G, it is assumed that G is of class C1

and that it also satisfies the Korn inequality. In addi-
tion to the variable e, p introduced in Section 2.1, the
variable b : G! ½0, 1� models the evolution of the sur-
face fraction with active glue fibers, which break or
mend by microscopic motions (solid glue is assumed
and for such irreversibility of the break). When b= 0

there are no active glue bonds, when b= 1 all bonds
are active, when 0\b\1, there is a proportion of
active glue bonds.

Because of the conditions imposed on the border of
solids, trace theorem extends the displacement field
u(x) with x 2 Oi to each of the points x 2 ∂Oi, in partic-
ular, can be extended over G: It will be denoted by

u2
jG
� u1

jG

��� ��� the gap on the contact surface G, where ui
Gj

is the small displacement of the solids Oi on G at the
macroscopic level. For the sake of simplicity, it neglects
the thermal phenomena and excludes the temperature
as a state quantity. Also, no work involving micro-
scopic motions is provided to the system, that is, there
are no chemical, radiative, optical, or electrical actions.
The differential inclusions used by Fremond for the
adhesion problem are

csb
�
� ksDsb+ ∂I 0, 1½ � bð Þ+ ∂I� b

�
� �

3vs �
k

2
u2
jG � u1

jG

��� ���2

on G,

ð6Þ

s1N1 � kb(u2
jG
� u1

jG
)� ∂I�((u

2
jG
� u1

jG
) � N2)N230,

s2N2 + kb(u2
jG
� u1

jG
)+ ∂I�((u

2
jG
� u1

jG
) � N2)N230,

9=
; on G,

ð7Þ

where:

� the parameter ks measures the intensity of micro-
scopic interactions,

� k is an elastic constant of the adhesive material,
� cs is the viscosity coefficient of the glue,
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� IA(x)=
0 if x2A

+‘ if x62A

n
is the indicator function ,

� I� xð Þ= 0 if x ł 0
+‘ if x.0

n
, I 0, 1½ � xð Þ= 0 if 1 ł x ł 0

+‘ otherwise

n
,

� I�((u
2
jG
� u1

jG
) � N2) is an impenetrability con-

straint of both solids (unilateral contact),

� I�(b
�
) characterizes the irreversible behavior of

solid glues (uni-directional contact),
� vs is the energy of Dupré which consists of the

work required to separate two adhered bodies.

In case of considering reversible adhesion, the relation

∂I�(b
�
) is removed from the equation. The boundary

and initial conditions for b are

k
∂b

∂ns

= 0 on ∂G, ð8Þ

b(x, 0)=b0(x) onG; ð9Þ

where ns denoting the normal vector exterior to ∂G:

Doubly nonlinear problems

Several authors have studied doubly non-linear prob-
lems, including,11,12,21 and the references in them. The
differential inclusion related to this model has the
representation

∂u( z
�
)+ ∂c(z) 3 F: ð10Þ

The approach to be used corresponds to the develop-
ments made by Colli,12 where ∂u and ∂c are monoto-
nous operators. The theorem that guarantees the
existence of solutions of (10) is enunciated at the end of
this section. Before that, the section presents some defi-
nitions and results of the convex analysis. In particular,
we will use functions f : V!� � ‘, +‘� that are con-
vex, lower semi-continuous (i.e. f is l.s.c. if
f (x)ł lim inf

y!x

f (y) for every x, y 2 V), proper (i.e.

f (x) 6¼ ‘ for some x 2 V), and sub-differentiable
(x� 2 ∂f (x) if x� 2 V � and x�, y� xh ił f (y)� f (x) for
every y 2 V) in x 2 V.

Example 1.

(1) If K � V,K closed and convex, the indicator
function IK is lower semi-continuous and convex
(see Temam,22 Prop 2.3).

(2) If f is convex, proper and semi continuous in V,
then ∂f (x) 6¼ ; (see Temam,22 Cor 2.5, Prop
5.2).

The solution space is defined as a Cartesian product of
spaces L2(O)m 3 n and Sobolev spaces W 1, 2(O)m 3 n:
Some distinctive results of these spaces are:

� There is a continuous immersion of W 1, 2(O) in
L2(O),

� W 1, 2(O) is a dense subspace of L2(O),
� The containment of W 1, 2(O) in L2(O) is compact

(usually symbolized by W 1, 2(O)bL2(O)) (see e.g.
Adams and Fournier,23 Th 6.2 or Brezis,24 Th 9.16).

Multivalued monotone operators are now introduced.

Definition 2. Let V, W linear spaces. A multivalued
operator A is a relation from V to W (A : V!!W),

that is, A : V! 2W. In this case, y 2 A(x) if
(x, y) 2 A:
Definition 3. Let V be a Banach space and
A : V!! V� a multivalued operator.

(1) A is monotone if for all (x1, y1), (x2, y2) 2 A, it is
verified

y1 � y2, x1 � x2h iø 0:

(2) A is strongly monotone if there exists C.0 such
that for any (x1, y1), (x2, y2) 2 A, one has

y1 � y2, x1 � x2h iø C x1 � x2k k2
V :

It is time to consider the problem

A z
�
(t)

� 	
+B(z(t)) 3 f (t) for a:e: t 2�0, T ½, z(0) 2 V,

where A : W!!W�, B : V!! V�, V �W, and f : �0,
T ½!W�: W is assumed to be reflexive and strictly con-
vex (V is strictly convex if the sphere in V does not con-
tain any line segment).

Theorem 4.

Let V,W such that, VbW, V dense in W, and let u,
c : W!� � ‘, +‘� proper, convex, and l.s.c. functions
such that

(1) ∂u : W!!W� is bounded (i.e. maps bounded
sets into bounded sets),

(2) ∂c : W!!W� is strongly monotone in V,
(3) f 2 L1(0, T ;W�)\H1(0, T ;V�),
(4) z0 2 V and there exists v0 2 ∂c(z0) � V�,
(5) f (0)� v0 2 D(u�), where u� is the conjugate

function (u�(x�)= sup
x2V

x�, xh i � u(x)f g, x� 2 V�)
of u,

Then there exists a triple z 2 H1(0, T ;V),
w 2 L‘(0, T ;W�), v 2 L1(0, T ;W�)\ L‘(0, T ;V) satisfing

w(t)+ v(t)= f (t),

w(t) 2 ∂u( z
�
(t)),

v(t) 2 ∂c(z(t)) for a:e: t 2�0, T ½z(0)= z0

4 Advances in Mechanical Engineering



Weak formulation

A variational or weak formulation of a physical model
consists of rewriting the differential equations as func-
tional acting on a space of functions. Such functionals
defined by integrals will have a representation by deriva-
tives whose order may decrease or even not exist by way
of integration by parts. Due to the multiple connotations
of the term ‘‘variational’’ it has been decided to call this
section ‘‘weak formulation’’ so as not to confuse it with
other formulations.25 In this regard, this section states
the weak model of adhesive and elastoplastic contact as
a function of u, p, b and of the surface and volume loads
acting on each solid in theorem 6.

We define the space W as the set of triples

(u, p,b)W =
u
p
b

0
@

1
A

such that u= u1, u2ð Þ 2 L2 O1ð Þ3 L2 O2ð Þ, p= (p1, p2)
2 L2(O1)

3 3 3 3 L2(O2)
3 3 3, b 2 L2 Gð Þ: Since O1 and O2

have boundaries of class C1, the elements of
H1(O1)

3 3 H1(O2)
3 can be extended to the boundary

from the trace operator g0.
26 The representation of this

extension will be the pair (uj∂OnG , ujG ), where
uj∂OnG :¼ g0uð Þj∂OnG , ujG :¼ g0uð ÞjG :We define

H1 :¼ u 2 H1(O1)
3 3 H1(O2)

3 : rui = rui

 �>

, i= 1, 2
n o

,

H1=2 :¼
(uj∂OnG , ujG) : ujG =uj∂OnG in∂G, ui

j∂OnG
2 L2(∂OinG)3,

ui
jG
2 L2(G)3, i= 1, 2

( )
,

and we represent with V the space of the vector functions

(u, p,b)V :¼
u e(u) uj∂OnG ujG

p
b rb

0
@

1
A,

such that u 2 H1 3 H1=2, p 2 L2(O1)
3 3 3
dev 3

L2(O2)
3 3 3
dev , b 2 H1(G): For short we will use the nota-

tion �, �h i to indicate any of the products

�, �h iL2(O1)
3 3 L2(O2)

3or �, �h iL2(O1)
3 3 3 3 L2(O2)

3 3 3 :

Theorem 5. V and W are Hilbert space under the
inner product

(u, p,b)V , (û, p̂, b̂)V
� 


V
:¼ u, ûh iH1 + g0u,g0ûh i

H
1
2

+ p, p̂h i+ b, b̂
� 


H1(G)
,

(u, p,b)W , (û, p̂, b̂)W
� 


W
:¼ u, ûh i+ p, p̂h i+ b, b̂

� 

L2(G):

Besides that, VbW:

Theorem 6. If u, p,b satisfy (2)–(9),

q= (q1, q2) 2 ∂R(p
�1

), ∂R(p
�2

)

� �
,

. 2 ∂I�(ujG (
�1
1 ) � N2),

a 2 ∂I�(b
�
),

1 2 ∂I½0, 1�(b),

then for all (û, p̂, b̂)V 2 V,

∂eW (e(u), p), e(û)h i �
ð

G

siN i � ûids

=f, û+ g, ûj∂OnG

D E
∂OnG

ð11Þ

q, p̂h i+ ∂pW (e(u), p), p̂
� 


= 0 ð12Þð
G

siNi � ûids+ k bujG (
�1
1 ), ûjG (

�1
1 )

� 

G

+

ð
G

.ûjG (
�1
1 ) � N2ds= 0

ð13Þ

csb
�
+a+ 1, b̂

� �
G

+ ks rb,rb̂
� 


G

+
k

2
ujG(

�1
1 )

�� ��2
, b̂

� �
G

= ws, b̂
� 


G

ð14Þ

Proof. By Green’s formula,

si, e(ûi)
� 


+ divsi, ûi
� 


=

ð
∂Oi

siNi � ûids: ð15Þ

Substituting (2) into (15), where si = ∂eW (e(ui), pi), we
obtainð

Oi

f i � ûi = � divsi, ûi
� 


= ∂eW (e(ui), pi), e(ûi)
� 


�
ð
∂Oi

siNi � ûids:

ð16Þ

From equation (5),ð
∂Oi

siNi � ûids=

ð
G

siNi � ûids+

ð
∂OinG

siNi � ûids

=

ð
G

siNi � ûids+

ð
∂Oin(G[Gi )

gi � ûi, ð17Þ

and from the substitution of (17) in (16),

∂eW (e(u), p), e(û)h i �
ð

G

siNi � ûids= f, ûh i+ g, ûh i∂OnG:

Peñas Galezo 5



Equation (12) is immediate by (3). Multiplying the first
equation of (7) by û1, the second by û2, and integrating
over G,ð

G

(s1N1 � û1 +s2N2 � û2)+ kb u2 � u1

 �

� û2 � û1

 �

+ . û2 � û1

 �

� N2ds

=

Z
G

siNi � ûids+ kbujG (
�1
1 ), ûjG (

�1
1 )G

+

Z
G

.ûjG (
�1
1 ) � N2ds

= 0,

where . 2 ∂I�(ujG(
�1
1 ) � N2), û= (û1, û2) 2 H1:

If b 2 H1(G), u 2 H1, cs
_b+a 2 ∂ cs

2
b
� 2

+ I�(b
�
)

� �
and 1 2 ∂I½0, 1�(b) satisfy the relation (6), then for all

b̂ 2 H1
G

csb
�
+a, b̂

� �
G

� ks Db, b̂
� 


G
+ 1, b̂
� 


G

= ws, b̂
� 


G
� 1

2
k u2 � u1
�� ��2

, b̂
D E

G
,

and by condition (8),

csb
�
+a, b̂

� �
G

+ ks rb,rb̂
� 


G
+ 1, b̂
� 


G

= ws, b̂
� 


G
� k

2
ujG (

�1
1 )

�� ��2
, b̂

D E
G
:

We will write the equations of the theorem 6 so that the
adhesive contact model can be represented as a doubly
non-linear problem. The sum of the terms (11)–(14) will
be grouped taking into account the pairings (V,V�),
and (W,W�) :

0, ûh i+ q, p̂h i+ cs b
�
+a, b̂

� �
G

� �

+

0, ûh i+ ∂eW e uð Þ, pð Þ, e ûð Þh i
+ 0, ûj∂OnG

D E
∂OnG

+ k bujG (
�1
1 ), ûjG (

�1
1 )

� 

G

+
R

G
.ûjG(

�1
1 ) � N2ds+ ∂pW e uð Þ, pð Þ, p̂

� 

+ 1+ ujG (

�1
1 )

�� ��2
, b̂

D E
G
+ ks rb,rb̂

D E
G

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

=

f, ûh i+ 0, e(û)h i
+ g, ûj∂OnG

D E
∂OnG

+ 0, ûjG
� 


G

+ 0, p̂h i+ vs, b̂
D E

G
+ 0,rb̂
D E

G

8>>><
>>>:

9>>>=
>>>;
,

where f= (f 1, f 2), g= (g1, g2): The first summation

corresponds to the product (0, q, csb
�
+ a)W ,

�
(û, p̂, b̂)W iW , where

(0, q, cs b
�
+ a)W 2 ∂W R( p

�
)+

cs

2
b
�

� �2

+ I�(b
�
)

( )
,

ð18Þ

while the second adding corresponds to the product
v, (û, p̂, b̂)V
� 


V
, where

v 2 ∂V W (e, p)+
ks

2
rbk k2 +

k

2
b ujG (

�1
1 )

�� ��2

+ I½0, 1�(b)+ I�(ujG (
�1
1 ) � N2):

ð19Þ

The last term is the product between F and (û, p̂, b̂)V ,
where

F :¼
f 0 g 0

0

vs 0

0
@

1
A:

Definition 7. We define by u : W!� � ‘,‘�, and
c : V!� � ‘,‘� the functional

u(u, p,b)W =R(p)+
cs

2
bð Þ2 + I�(b),

c(u, p,b)V =W (e, p)+
ks

2
rbk k2 +

k

2
b ujG(

�1
1 )

�� ��2

+ I½0, 1�(b)+ I�(ujG(
�1
1 ) � N2),

and their respective subdifferentials ∂Wu : W!!W�,
and ∂V c : V!! V� by

∂W u(u, p,b)W =
0

∂pR(p)
csb+ ∂bI�(b)

0
@

1
A,

∂V c(u, p,b)V =

0 ∂eW (e(u), p) 0 ∂ujG
k
2

b ujG(
�1
1 )

�� ��2
+ I�(ujG(

�1
1 ) � N2)

n o
∂pW (e(u), p)

∂bI½0, 1�(b)+
k
2

ujG(
�1
1 )

�� ��2
ksrb

0
BB@

1
CCA

Definition 8. For (f, 0) 2 H1ð Þ�, (g, 0) 2 H1=2

 ��

,
vs 2 L2(G)ð Þ�, we define the mapping F 2 V� by

F, (u, p,b)Vh iV = f, uh i+ g, uj∂OnG

D E
∂OnG

+ vs,bh iG

for each (u, p,b)V 2 V:
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Problem 9. The weak problem of contact with adhe-
sion and elastoplastic deformation is defined by:

Find u, p,b such that

∂W u( u
�
, p
�
,b
�
)W + ∂V c(u, p,b)V 3 F ð20Þ

Definition 10. A solution of the Problem 9 is a triplet
(u, p,b) 2 H1(0, T ;V) satisfying (20).

Existence of weak solutions

Theorem 11. ∂c is strongly monotone

Before making this proof, we will prove that

Theorem 12. The mapping (u, p)7! ∂eW (e(u), p),h
e(u)i+ ∂pW (e(u), p), p

� 

is strongly monotone.

Proof. Since ∂eW (e(u), p) and ∂pW (e(u), p) are linear for
all (u, p) 2 V, we will prove that there exists C.0 such
that

∂eW (e(u), p), e(u)h i+ ∂pW (e(u), p), p
� 


ø C (u, p)k k2
V :

For short we will symbolize e(u)=e, and e(ui)= ei:
From equation (4), ∂eW (e(ui), pi) =C(e(ui)� pi) and
∂pW (e(ui), pi)= � C(e(ui)� pi)+ hip

i: Using the
Einstein summation convention,

∂eW e uð Þ, pð Þ, e uð Þh i+ ∂pW e uð Þ, pð Þ, p
� 


= C e ui

 �
� pi


 �
, e ui

 �
� pi

� 

+ hi pi

�� ��2

ø 2mi ei � pi
�� ��2

+ hi pi
�� ��2

ø min m,
h

2

� �
ei � pi
�� ��2

+ pi
�� ��2

h i
+

h

2
pi
�� ��2

ø c e� pk k+ pk k½ �2 + pk k2
n o

ø c ek k2 + pk k2
n o

,

and by the Korn’s inequality ,

c ek k2 + pk k2
n o

ø c CK uk k2
H1 + pk k2

n o
ø C uk k2

H1 3 H1=2 + pk k2
n o

:

By the linearity of e, ∂eW and ∂pW ,

∂eW e û� uð Þ, p̂� pð Þ, e û� uð Þh i
+ ∂pW e û� uð Þ, p̂� pð Þ, p̂� p
� 


ø C û� uk k2
H1 3 H1=2 + p̂� pk k2

n o
:

Proof of Theorem 11. Because k
2

b ujG (
�1
1 )

�� ��2
, I½0, 1�(b),

and I�(ujG (
�1
1 ) � N2) are convex, proper and l.s.c,

∂V

k

2
b ujG (

�1
1 )

�� ��2
+ I½0, 1�(b)+ I�(ujG(

�1
1 ) � N2)

� �
ð21Þ

is monotone. By Korn’s inequality over G,

ksr b1 � b2ð Þ,r b1 � b2ð Þh iG ø C b1 � b2k k2
H1(G), ð22Þ

therefore, by the theorem 12, the equations (21), (22), if
j1 2 ∂c(u, p,b)1V

, j2 2 ∂c(u, p,b)2V
, then

j1 � j2, (u, p,b)1V
� (u, p,b)2V

� 

ø C u1 � u2k k2

H1 3 H
1
2
+ p1 � p2k k2

n o
+C b1 � b2k k2

H1 Gð Þ

=C (u, p,b)1V
� (u, p,b)2V

�� ��2

V
, C.0,

and ∂c is strongly monotone.
We want to guarantee the existence of solutions

through the Theorem 4, but not directly since ∂W u is
not bounded. So, we will prove the existence of solu-
tions of the following differential inclusion:

∂W un( u
�
, p
�
,b
�
)W + ∂V c(u, p,b)V3F, ð23Þ

(u, p,b)V (0)= (u0, p0,b0)V ,

with ∂W un bounded, where

un(u, p,b)W =R(p)+
cs

2
bk k2

G + In
�(b),

In
�(b)=

0 if b(G) �� � ‘, 0�
n bk k+G otherwise

�
,

cn(u, p,b)V [c(u, p,b)V :

Later it will be proved that this solution also solves
problem 9. In the rest of the document we will
symbolize

z(0)= z0 =
u0 e(u0) u0j∂OnG u0jG

p0

b0 rb0

0
@

1
A 2 V ,

v0 2 ∂V cðu0; p0;b0ÞV ,

and

F(0)=
f(0) 0 g(0) 0

0

vs(0) 0

0
@

1
A:
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Theorem 13. If F(0)� v0 2 ∂W R(p)+ ∂In
�(b)

� �
j(p,b)= (0, 0)

,
then for each k ø n 2 N,

F(0)� v0 2 D(u�k):

Proof. Since ∂uu= 0, f(0)= 0 must be assumed.
Consider the representation

v0W
=

v01

v02

v03

0
@

1
A where

v02
= ∂pW (e(u0), p0),

v03
2 ∂bI½0, 1�(b0)+

k

2
u0jG(

�1
1 )

�� ��2

8<
: :

Since F(0)2 � v02
2 ∂pR(0) and F(0)3 � v03

2 ∂In
�(0),

then for all (u, p,b)W 2W,

F(0)2 � v02
, ph ił R(p)� R(0),

F(0)3 � v03
,bh iG ł In

�(b)� In
�(0)ł Ik

�(b)� Ik
�(0),

for each k ø n: So

F(0)� v0, (u, p,b)Wh iW � uk(u, p,b)W

= F(0)2 � v02
, ph i+ F(0)3 � v03

,bh iG
� R(p)� Ik

�(b)

ł R(0)+ Ik
�(0)\‘,

and F(0)� v0 2 D(u�k) for all k ø n 2 N:

Theorem 14. Given z0 2 V, v0 2 ∂c(z0),F 2 L1

(0, T ;W�)\H1(0, T ;V�) with the hypotheses of the
Theorem 13, then there is a weak solution to the problem
9.
Proof. It is not difficult to verify that un(u, p,b)W =
R(p)+ cs

2
bk k2

G +In�(b) and cn(u, p,b)V =c(u, p,b)V
are proppers, l.s.c., and convex functions. Further, ∂un

is monotone (see e.g. Showalter,27 p. 158) and bounded.
By Theorem 13, F(0)� v0 2 D(u�n)for all n ø N 2 N,
and by Theorem 11 ∂c is strongly monotone. By
Theorem 4, for each n ø N there exist zn 2 H1(0, T ;
V),wn 2 L‘(0, T ;W�), vn 2 L1(0, T ;W�)\ L‘ 0, T ;V�ð Þ
that satisfy differential inclusion (23), this is,

wn tð Þ+ vn tð Þ=F tð Þ,

wn tð Þ 2 ∂un z
�

n tð Þ
� 	

,

vn tð Þ 2 ∂cn zn tð Þð Þfor a:e: t 2�0, T ½,

zn(0)= z0:

If for some m 2 N we prove that z
�

m
2 D(u), then we will

have proved that zm is a weak solution to the problem 9.

We must assume n 2 N : bn = 0f g= ; (otherwise

b
�

n = 0 and a weak solution to the problem is obtained).
Therefore, n 2 N implies 0 6¼ bn ł 1, and 1n ø 0 for
each 1n 2 ∂I½0, 1�(bn):

If # n 2 N : b
�+

n .0

� �
=‘, then there is a sub-

sequence b
�

ni
of b
�

n, and a sub-sequence 1ni
2 ∂I½0, 1�(bni

),

such that ∂Ini
� (b
�

ni
)= ni

b
�+

ni

��� ���
G

b
�+

ni
and R(1ni

) 2 ½0, +‘½. It

is clear that b
�+

ni
2 L2(G), since zni

2 H1(0, T ;V):

Multiplying by b
�+

ni
the component b of the inclusion

(23),

vs,b
�+

ni

� �
G

ø csb
�

ni
+

ni

b
�

ni

+

����
����

G

b
�+

ni
,b
�+

ni

* +

G

+ 1ni
,b
�+

ni

� �
G

+
k

2
ujG (

�1
1 )

�� ��2
,b
�+

ni

� �
G

ø
ni

b
�+

ni

����
����

G

b
�+

ni
,b
�+

ni

� �
G

,

so vsk kG ø vs,b
�+

ni
=

b
�+

ni

��� ���
G

* +
!

ni!‘
‘, which contra-

dicts that F 2 H1(0, T ;V�): For this reason it follows
that

# n 2 N : b
�+

n .0

� �
\‘,

and there exists M 2 N such that b
�

m ł 0 for all m ø M :

This proves that z
�

m
2 D(u), and since ∂In

�(b
�

m) � ∂I�(b
�

m)

for all b
�

m ł 0, it follows that zm is a weak solution to
the problem 9.

Summary and conclusions

� Differential inclusions that formulate a weak uni-
directional adhesive unilateral contact problem,
with elastoplastic deformation and hardening,
were compressed as an abstract doubly non-linear
problem, with unbounded multivalued operators.

� The weak formulation allowed the derivative for
displacement and adhesion field to be reduced
from order 2 to order 1.

� The model covers both, the rate-independent case
as well as the mixed case (rate-independent for
elastoplasticity and rate-dependent for adhesion).

� The geometric requirements on the boundaries
of deformable solids demand that they be of class
C and that they also satisfy the Korn inequality
both for the displacements and for the bonding

8 Advances in Mechanical Engineering



field; For this, null displacement is required in a
part of the boundary of each solid.

� The displacement variable was extended to the
contact boundary to interact as an inner product
with the bonding field.

� The paper proves the existence of weak solutions
of the model without using the energy solutions
approach in similar papers. To obtain the proof
of existence we construct a succession of doubly
nonlinear problems that approximate the model
under study. It was proved that each problem in
the sequence has a solution, and that one of these
models shares a solution with the original model.
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