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A B S T R A C T

The present study investigated the use of sludge ash from water treatment plants as supplementary cementing
material, elaborating hydraulic mortars with different levels of cement replacement by sludge ash (10 wt% and
30 wt%) and different temperatures of calcination (600 °C and 800 °C). Characterization of sludge ash and
mortars includes XRF, XRD, particle size distribution by laser diffraction, compressive strength, and SEM-EDS.
The results show that SiO2, Al2O3, and Fe2O3 compose 90 % of the sludge ash, and it has potential pozzolanic
activity. It is evidenced that there is a significant influence of the variable ratio of sludge ash:cement in the
compressive strength of the mortar cubes over other variables. Overall, this study showed that the sludge ash
could be considered as a viable and sustainable alternative for the construction sector. Despite the benefits of the
suggested replacement, the presence of amorphous SiO2 requires a review of long-time chemical behavior.

1. Introduction

Nowadays, industries are implementing sustainable and ecological
processes, recognizing the improvement in resource productivity
through a circular economy (CE) system. This system aims to give
added value to products while reusing or eliminating waste [1]. The
increase in demand in construction materials (e.g. cement), shows the
need to develop new alternatives from different sources, since tradi-
tional production has considerable environmental impacts because of
natural resources consumption and CO2 high output [2,3], therefore,
the construction industry has a marked challenge from the United Na-
tions Environment Program Sustainable Building and Climate Initiative
(UNEP-SBCI) which consists in developing a new material with low CO2

emissions and eco-efficient [4], which has led this industry as the main
user of waste worldwide [5], managing processes from CE system.

Among the waste used as a cement substitute is the sludge ash (SA)
found in drinking water treatment plants, which is produced by the
calcination of dry sludge (DS), achieving a 90 % reduction in volume.
The sludge, as it is generated in the sedimentation stage in the drinking
water treatment plants, requires adequate final disposal because it has
undesirable chemical properties and contain dangerous and toxic

substances that cause adverse effects on human health and the en-
vironment [6–9]. Studies have shown that aluminum, an element pre-
sent in the coagulants used in the water purification process, can be
toxic [10] and in high concentrations becomes a risk factor for Alz-
heimer's disease [11].

The pozzolanic activity has been found in SA through various stu-
dies [12–14], showing its use as a mineral additive. The literature de-
scribes that it is possible to get the same strength observed in the re-
ference concrete (100 % Portland cement), reducing cement
consumption by 37–200 kg/m3 in concretes using SA [13]. Inclusion of
SA in mortars as supplementary cement material (SCM) (5, 10, 15, 20,
25 and 30 % of cement mass) increases the porosity which influences all
the physical and mechanical properties [15], keeping unaffected the
general condition of mortars related to performance on fresh and har-
dened states [13]. The present study aims to determine the influence of
the calcination temperature and the percentage of cement substitution
by SA on the compressive strength of hydraulic mortars performing a
complete factorial experimental design using inferential statistics and
characterizing the supplementary cementing material by X-ray dif-
fraction (XRD) and X-ray fluorescence (XRF). Also, its particle size is
described by laser diffraction (LD), and the mortars prepared are
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analyzed by SEM coupled to EDS.

2. Materials and methods

A description of materials and standards implemented in this re-
search is presented below.

2.1. Cement and SA

The following materials were used: Ordinary Portland cement (OPC
CEM 1), produced by ARGOS, according to the standard NTC 121 [16]
and ASTM C-1157 [17]. SA from a water treatment plant located in
Barranquilla, Colombia. Its source of water collection is the Magdalena
River. The SA sampling was carried out between August and September,
a period with scarce rainfall.

2.2. Aggregate and water

In this study, one type of natural sand from Santo Tomas – Atlántico,
Colombia, was characterized complying ASTM C778 [18] besides tap
water was used, complying with Colombian regulations for chemical,
microbiological and physical characteristics for drinking water [19].

2.3. Mix design

The mortar mixture types were selected following an experimental
factorial design 2k, where k= 2, resulting in 4 combinations. The ex-
ponent represents the factors of calcination temperature of the sludge
and percentage of cement replaced by SA, and the base corresponds to
the low and high test levels for each factor; temperature levels were
600 °C and 800 °C and the percentage of cement substitution by SA 10
% and 30 % (by weight). Factor values were determined from the lit-
erature review [20,21]. The combinations obtained from the experi-
mental design were the following: CM1 (10 % -600 °C), CM2 (10 %
-800 °C), CM3 (30 % -600 °C) and CM4 (30 % -800 °C) and the water-
cement (W/C) ratio used was 0.594 (above the standardized value of
0.485; explained further in Section 3.1).

The preparation of the mortars was carried out according to the
standard ASTM C109 [22]. Table 1 shows the materials used for each
mix: a) mortar cubes, including SA, and b) control mortar cubes, in-
cluding only Portland cement (PC).

2.4. Sample preparation and test methods

For this research, sampling in the drinking water treatment plant
allowed recovering 45 kg of sludge with a moisture content of 66.7 %.
The sludge sample was first dried at a room temperature of 32 °C for
96 h (Fig. 1a), attaining a weight of 15 kg of dry sludge. The mass yield
of the sludge was 33.33 % on a dry base (Fig. 1b). DS was ground in a
Holmes mill, model 201XL using a mesh No. 8, then calcined in a
Carbolite ash oven model AAF 11/18 at temperatures of 600 °C and
800 °C (SA600 °C and SA800 °C) with a residence time in the oven of 3 h
(Fig. 1c) [23]. After the calcination, the mass yields, for the ashes got at
600 °C and 800 °C, were 89.2 % and 87.21 %, respectively, with an
orange coloration. After this, the pozzolanic activity was determined by
the Modified Chapelle test [24] to SA600 °C and SA800 °C, which

determines, by titration with 0.1 M HCl, the content of Ca (OH)2 not
consumed (free content) by the reactive phases present in the SA during
16 h of reaction at 90 ± 5 °C of 2 g CaO grade laboratory and one gram
of the waste diluted in distilled water.

The chemical composition of the DS and SA was determined with X-
ray fluorescence (XRF) analysis on an Epsilon 3Lp Panalytical device.
The present phases of the SA were determined by X-ray diffraction
(XRD) and using an XPert Panalytical Empyrean Series II reference set
with a high-speed solid-state detector, with PIXcel 3D data acquisition
and using CuK radiation (0.154187 nm). The crystalline phases were
semi quantified using X'pert Highscore software by the Rietveld method
[25]. Also, the SA characterization was enhanced through an analysis of
particle size by laser diffraction with a Master sizer 2000E equipment
that comprises a measuring range between 0.1 μm and 1750 μm. The
powder samples were kept in suspension for 10min to eliminate the
Van der Waals and electrostatic forces between the particles, before
their introduction into the equipment.

To study the influence of temperature and the percentage of SA in
mortars, a compressive strength test, according to ASTM C109 [22],
was carried out on a Controls® mortar cubes tester. Sixty tests were
conducted; the order to test the mortar cubes was randomized to
guarantee an unbiased response (i.e., compressive strength). Micro-
structural analysis of the mortars was performed by scanning electron
microscopy (SEM), using a Thermoionic SEM JEOL JSM-6490LV, al-
lowing the visualization of physical characteristics as texture, im-
purities, microcracking, and structural morphology. Also, a semi-
quantitative analysis of the elemental composition of energy dispersive
spectroscopy (EDS), coupled to SEM, was performed.

2.5. Statistical analysis

The statistical analysis of the data was carried out using analysis of
variance ANOVA of the Minitab® statistical software [26]. Two factors
corresponded to the variables temperature and SA:C relation; the re-
sponse variable was the unconfined compressive strength of the mortar
cubes. The interaction between the two factors was then analyzed.

3. Results and discussion

3.1. Characterization of materials

Chapelle tests resulted in values of 1967.9 and 1543.0mg of Ca
(OH)2 per g of residue for SA600°C and SA800°C, which are higher than
the minimum limit of 436mg Ca(OH)2/g established by Raverdy et al.
[27] to consider a mineral addition as a pozzolanic material. These
results let us define both ashes as pozzolanic. Ahmad et al. [28] also
bring this classification through the direct Chapelle test to identify the
pozzolanic activity in the sludge generated by the backwash of the
filters calcined at 800 °C in Ghaziabad, India, with a test result of
560mg Ca(OH)2/g of residue.

Table 2 shows the chemical composition of the DS, and SA calcined
at 600 °C and 800 °C. It is observed that the SD and SA contain the
principal oxides present in cementing materials such as SiO2, Al2O3,
Fe2O3, and CaO; also, there are no significant differences between
concentrations obtained for the SA treated at 600 °C and 800 °C. Si-
multaneously, the approximate composition limits of oxides for

Table 1
Cementing mixture types and material quantities used in mortar cubes preparation.

Mixture type SA+C (g) Sand (g) Water (ml) W/C SA (g) C (g)

Cementing Mix – Mod 1 (CM1) 1060 2915 629.64 0.594 106 954
Cementing Mix – Mod 2 (CM2) 1060 2915 629.64 0.594 106 954
Cementing Mix – Mod 3 (CM3) 1060 2915 629.64 0.594 318 742
Cementing Mix – Mod 4 (CM4) 1060 2915 629.64 0.594 318 742
Cementing Mix - Control (CM) – 2915 629.64 0.594 – 1060
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Fig. 1. Sludge from the drinking water treatment plant. (a) Dried in room temperature, (b) Appearance of sludge after drying at room temperature, (c) Sludge
calcined at 600 °C and 800 °C.

Table 2
Chemical composition of DS and SA calcined at 600 °C and 800 °C.

Oxide %Mass

DS SA600 °C SA800 °C Cement [38]

SiO2 60.91 60.39 60.31 17 - 25
Al2O3 19.72 20.81 20.121 3 - 8
Fe2O3 11.59 11.11 10.8715 0.5 - 6.0
K2O 2.42 2.33 2.1275 0.4 - 0.6
CaO 1.481 1.53 1.991 60 - 67
MgO 1.47 1.46 1.269 4.0
TiO2 0.96 0.92 0.916 0.26 - 0.90
SO3 0.23 0.25 0.2005 1 - 3

Fig. 2. Diffractogram of DS, treated at 600 °C (SA600 °C), and 800 °C
(SA800 °C).

Table 3
Particle size by volume for the SA.

D, volume percent Particle size, μm

SA600°C SA800°C

D(0.1) 6.638 6.138
D(0.5) 112.718 98.217
D(0.9) 590.375 570.860
Residual % 0.748 0.650

Fig. 3. Particle size distribution of SA at 600 °C and SA at 800 °C.

Fig. 4. Granulometry curve of the fine aggregate.
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Portland cement is shown [29]. If the approximated data of cement
composition is compared to the SA composition, it is observed that
SiO2, Al2O3, and Fe2O3 oxides have high concentrations at both tem-
peratures; the percentage represents 90 % of sludge ash composition,
which allows classifying the material as pozzolan class F [30]. The re-
sults from the chemical composition of the sludge calcined at 600 °C
and 800 °C (Table 2) are similar to those of Gastaldini et al. [13] who
used SA as a mineral addition in the manufacture of mortars, char-
acterizing by XRF the ashes obtained at 600 °C, in which the percentage
of SiO2, Al2O3 and Fe2O3 also exceeds 90 %.

The XRD results for the SA treated at 600 °C, 800 °C, and DS without
thermal treatment, are shown in Fig. 2. It is observed that the main

components in the DS are quartz (89.9 %) and alumina (5.1 %). There
are also small amounts of eskolaite, fluorite, hematite, calcite, and
kaolinite. The diffractograms of SA600°C shows that the most significant
components are quartz (96 %) and alumina (2 %), finding a decrease in
the percentage of alumina by 3 % and an increase in the proportion of
quartz by 6 % related to the DS composition. The diffractograms of
SA800°C shows quartz (94.4 %) and alumina (2 %) as predominant
components.

The calcination at 800 °C revealed a decrease of quartz by 1 %
compared to the percentage of quartz present in SA600°C. Also, calcite
decreases in ash calcined at 800 °C because it decomposes close to this
temperature at atmospheric pressure to produce calcium oxide and
carbon dioxide [31]. The results show significant quantities of SiO2 and
Al2O3, responsible for the formation of calcium silicate hydrate (C-S-H)
and calcium aluminate hydrate (C-A-H) in the hardened cement paste
[32], once they are hydrated.

Regarding the particle size, the SA600°C and SA800°C showed a par-
ticle diameter between 1 and 1000 μm. Table 3 shows the results of
particle size in volume percent for the SA600°C and SA800°C. It is ob-
served that 90 % by volume of the analyzed particles had a diameter
below 590.375 μm and 570.860 μm for the SA600°C and SA800°C.

Fig. 3 shows a particle size distribution of SA at 600 °C and 800 °C.
Comparing the obtained data of particle size with the particle size
distribution according to the ASTM C 618-17a standard [30], the per-
centage of analysed ash particles have an approximate diameter below
45 μm is 35.078 % and 35.915 %, respectively, which are largely con-
sistent with the amount of 34 % reported by the ASTM Standard. With a
higher finesse of the particles of the pozzolan material, the density of
the mortar mixture will be lower, causing a higher water requirement.
Due to this reason and the characteristics of the SA studied, there is an
increase in the water requirement and the relation water-cement ratio
as per ASTM C109 (standardized water/cement ratio: 0.485).

3.2. Characterization of aggregates

In this research, one type of natural siliceous sand was used com-
plying with ASTM C778 – 17 [18]; sand (F1), with a specific gravity of
2.61 g/cm3 and fineness modulus of 3.0. The particle size distribution is
shown in Fig. 4.

3.3. Compressive strength

Table 4 shows the results for the unconfined compressive strength
tests at different curing ages for each of the mortar mixtures as de-
scribed in Table 1. The results show that the compressive strength in-
creases as the curing time increases, this increase being more significant

Table 4
Results for unconfined compressive strength in mortar cubes for each cementing mixtures (CM) by age.

Ages (days) Cementing mixtures (CM) with SA addition (MPa) CM

CM 1 CM 2 CM 3 CM 4

fm av Sd* fm av Sd* fm av Sd* fm av Sd* fm av Sd*

1 9.24 9.00 0.34 6.69 6.80 0.15 – 4.12 0.14 – 4.41 0.28 9.16 9.30 0.20
8.76 6.90 4.02 4.61 –
– – 4.22 4.21 9.44

7 15.09 14.76 0.47 16.12 16.31 0.26 6.81 7.13 0.45 6.39 6.63 0.34 12.29 12.80 0.71
14.42 16.49 – 6.87 –
– – 7.45 – 13.30

14 14.81 15.10 0.41 16.82 17.98 0.84 9.93 9.05 0.74 10.12 9.00 0.89 15.10 15.94 0.81
15.39 – – 7.87 16.78
– 19.14 8.17 – –

28 – 17.10 0.51 20.05 19.81 0.34 – 9.96 0.58 9.94 9.90 0.06 – 20.35 0.95
16.74 19.57 9.55 9.86 19.18
17.46 – 10.37 – 21.51

Note: fm: unconfined compressive strength [MPa]; av: average [MPa]; Sd: Standard deviation [MPa].

Fig. 5. Compressive strength for each cementing mixture at different curing
ages.

Table 5
Variance analysis results.

Source DFa SSb MSc Fd Pe

Ratio SA:C 1 401.153 401.153 31.24 0.000
Temperature 1 2.657 2.657 0.21 0.653
Ratio SA:C×Temperature 1 3.458 3.458 0.27 0.608
Error 28 359.564 12.842
Total 31 766.832
S=3.583 R-sq= 53.11 % R-sq (adj)= 48.09 %

aDF: Degree of freedom bSS: Sum of squares cMS: Mean squared dF: Statistical
value F eP: Statistical value P.

K. Bohórquez González, et al. Materials Today Communications 23 (2020) 100930

4



in the samples CM1 and CM2 compared to the CM. The standard de-
viations are small, which shows that the results have little dispersion
among them. Fig. 5 shows the tendencies of the compressive strength
from each of the mortar mixtures with SA compared to the CM. The
sample CM3 and CM4 did not develop compressive strengths higher
than 10MPa in any curing age, compared with the control mortar
(difference: 48 %), possibly due to the dilution effect justified by the
addition of 30 % of SA; these results are similar to those presented by
Carvalho Gomes et al. [33], which in their review article determined a
compressive strength reduction between 14–65 % in replacements be-
tween 10 % to 30 % of the cement by the supplementary cementitious
material.

The CM1 and CM2 samples show a tendency similar to the CM
(Control) at 7 and 14 days. The CM2 shows a compressive strength
value close to the CM after 28 days of curing (difference: 0.53MPa).

3.4. Statistical analysis

Table 5 shows the results of the ANOVA statistical analysis. The

statistical P-value for the interaction ratio SA:C× temperature is 0.608.
Therefore, the null hypothesis that all interactions are equal to 0 is not
rejected, and it is concluded that the additive model for a two-way
ANOVA analysis of variance is credible.

The statistical P-value for the SA:C ratio is 0.000, meaning that it
affects the response variable, that is, the compressive strength of the
mortar cubes. The statistical P-value for temperature, 0.653, inferred
that its effect on the response variable is little or minimal compared to
the SA:C ratio. These results show the direct influence of the SA:C ratio
with the mechanical properties of the mortar cubes, while statistically,
for the range of temperature tested, it does not significantly influence
the mechanical properties of the mortar cubes. A residual plot and a
normal probability plot of the residuals were used to check the as-
sumption of equal variances, and thus, to verify normality. Fig. 6a
shows the linearity of the data, which shows the effect of the influential
data. In Fig. 6b, the points presented are close to the normality line,
meaning that there is no evidence of strong deviation from normality.

The replacement of cement with supplementary cementing mate-
rials involves a reaction of the portlandite, Ca(OH)2, with the

Fig. 6. a) Residue graph for compressive strength data, b) Normal probability plot for the residuals.

Fig. 7. Cement hydration products for the CM after 28 days of curing: ettringite (E), portlandite (P), and hydrated calcium silicates (C-S-H).
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amorphous phases of the aluminosilicates present in the SA to produce
C-S-H. Sludge calcination at 600 °C or 800 °C does not achieve the
change from amorphous phases to crystalline phases; therefore, energy
expenditure is unnecessary. These characteristics are confirmed by the
XRD results, where the variation of the crystalline phases presents a

minimal difference in the diffractograms. These results are consistent
with those found by Gastaldini et al. [13] and Hagemann et al. [14].
Regarding quartz, it must be considered the quantification of the
amorphous phases to evaluate the long-term chemical performance of
mortar mixes, including SA. The amorphous phases of quartz react with

Fig. 8. Hydration products of the cement for the CM1 sample at 28 days of curing.

Fig. 9. Hydration products of the cement for the CM2 sample at 28 days of curing.
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Fig. 10. EDS analysis for the CM sample at 28 days of curing.
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portlandite, resulting in the silica gel that is an expansive compound,
source of several pathologies in concrete [34].

3.5. Microstructural analysis

Fig. 7a shows the SEM micrographs for the CM. Fine needles of
ettringite (E, hydrated calcium sulphoaluminate, Fig. 7b), portlandite
plates (P; Calcium hydroxide or CH, Fig. 7c), typical of the cement paste
once hydrated, and hydrated calcium silicate amorphous phase (C-S-H,
Fig. 7d) are observed.

Figs. 8 and 9 show the microstructures for samples CM1 and CM2.
The presence of ettringite and hydrated calcium silicates (C-S-H) is
observed in both samples. The portlandite (CH) does not appear which
contributes negatively to the chemical stability of the compound,
probably because of the pozzolanic reaction that transforms CH into C-
S-H, improving mechanical properties and filling some of the open
pores, confirming the compressive strength results of improved per-
formance of the mortars with SA addition [35,36]. It is observed SA as
off-white hemispherical particles in the concrete matrix (Figs. 8d and 9
d). Other works show SA morphology as an irregular surface formed by
angular particles with low sphericity [36]. Pospíšil et al. [37] found
microstructures with ettringite and portlandite crystals forming needle
shapes, fibers or fan-shaped agglomerations, and the portlandite crys-
tals forming shapes of boards or chips within a gap-free space.

Fig. 10 shows the SEM-EDS analysis for the CM sample at 28 days of
curing. Fig. 10a, spectrum 1, shows ∼15 μm hemispherical granules
formed mainly by Ca (44.4 wt%) and O (44.94 wt%); while in spectrum
2, a grey and flat area is observed, formed mostly by Si (43.89 wt%) and
O (46.49 wt%). Fig. 10b shows the compositional analysis of the ob-
served microstructures. A high percentage of Ca (67.20 wt%) and O
(24.45 wt%) was found in spectrum 1, evidencing portlandite (Ca
(OH)2) and for spectrum 2, Ca (72.70 wt%) was shown, O (12.40 wt%),

Si (10.49 wt%) and Al (1.45 wt%) ratifying the presence of ettringite
(Ca6Al2(SO4)3(OH)12·26H2O).

Figs. 11 and 12 show an SEM-EDS analysis performed on samples
CM1 and CM2. It is observed that the grey areas (Figs. 11 and 12,
spectrum 1) are rich in silicon and oxygen with high percentages by
weight of Si (54.98 wt%), O (43.75 wt%) for sample CM1, and Si
(63.56 wt%) and O (34.869 wt%) for sample CM2. It is observed that
these percentages are higher compared to the CM results, and it can be
inferred that there is a particular influence of the SA treated at 600 °C
and 800 °C in the mortar mixture.

Moreover, there are zones with presence of light grey hemispherical
granules and porous texture (Figs. 11 and 12, spectrum 2) conformed
mainly by Ca (37.48 wt%), O (48.29 wt%), Si (7.51 wt%) and Al
(3.68 wt%), for the sample CM1, and Ca (44.21 wt%), O (47.22 wt%), Si
(5.76 wt%) and Al (1.61 wt%), for sample CM2. These forms of struc-
tures are similar for both types of mixtures, and they are very similar in
composition to the ettringite. However, the shape of this microstructure
is different compared to the CM sample.

4. Conclusions

With this experimental work, the following conclusions can be
drawn:

• According to the analysis of XRF and XRD of the samples, SiO2,
Al2O3 and Fe2O3 represent 90 % of the composition of sludge ash
which according to ASTM C618-17a classifies sludge ash as pozzolan
material class F, showing the potential of the SA from the drinking
water treatment plants to be used as a supplementary cementing
material.

• CM1 and CM2 mixtures, which contain the lowest proportion of
sludge ash and lowest temperature (10 % -600 °C), develop a

Fig. 11. EDS analysis for sample CM1 at 28 days of curing.
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compressive strength similar to the CM at all ages of curing, showing
the feasibility of using SA from the drinking water treatment plant in
the construction industry.

• The microstructure revealed that SA mortar shows ettringite and
hydrated calcium silicates (C-S-H), probably because of an overtime
pozzolanic reaction.

• The statistical analysis of the data shows a more significant influ-
ence of the variable ratio of sludge ash:cement in the compressive
strength of the mortar cubes compared with the variable tempera-
ture.

• The SEM-EDS analysis for CM1 and CM2 resulted in areas rich in
silicon and oxygen with high percentages of Si (54.98 wt%), O
(43.75 wt%) for sample CM1, and Si (63.56 wt%) and O (34.869 wt
%) for sample CM2. These results are higher compared to the CM
composition. This analysis complements XRD results for the SA
treated at 600 °C, 800 °C, and DS without thermal treatment, where
it is observed that the main components in the DS are quartz (89.9
%) and alumina (5.1 %). It is noticeable that crystalline quartz is
desirable and inert, resulting in a stable mix. The use of SA should be
cautious regarding reactions between amorphous quartz (not yet
quantified) and alkaline compounds of the concrete as Ca(OH)2,
causing hydrophilic silica gel and, therefore, resulting in expansion
and severe pathologies in concrete when hydrated.

Despite the benefits of the suggested replacement and in the pro-
portions studied, this topic needs more research directed to study the
long-time behavior of these type additions with high contents of SiO2

and its associated pathologies (i.e., alkali-silica reaction) according to
the quantification of amorphous SiO2.
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