Mostrar el registro sencillo del ítem

dc.contributor.authorHerrera Acosta, Roberto J.
dc.date.accessioned2022-11-15T21:42:41Z
dc.date.available2022-11-15T21:42:41Z
dc.date.issued2021-02-04
dc.date.submitted2021-02-04
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1049
dc.description.abstractEl análisis de la capacidad de un proceso es una herramienta esencial en ingeniería para evaluar su desempeño de un producto con respecto a una(s) tolerancia(s) o especificación(es). Esta capacidad de proceso permite estimar las condiciones de calidad del producto, monitoreando históricamente o en línea la(s) variable(s) que permite identificar si un producto cumple o no los requisitos de calidad.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.titleÍndices de Capacidad Univariados. Aplicaciones en el área productivaspa
dcterms.bibliographicCitationhttp://members.marticonet.sk/jkuba/normy/ASME_Geometry_Dimension%20and%20Tolerances_Haspa
dcterms.bibliographicCitationJeh-Nan Pan and, Chung-I Li. (2014). New capability indices for measuring the performance of a multidimensional machining process.spa
dcterms.bibliographicCitationKane V.E. (1986) Process capability indices. Journal of Quality Technology. 18:41–52.spa
dcterms.bibliographicCitationHsiang, T. C. y Taguchi, G. (1995). A tutorial on quality control and assurance the Taguchi methods. ASA Annual Meeting. Las Vegas, Nevada.spa
dcterms.bibliographicCitationChan LK, Cheng S.W y Spiring F.A. (1988). A new measure of process capability C_pm. Journal of Quality Technology 20(3):162–175.spa
dcterms.bibliographicCitationPearn WL, Kotz S y Johnson NL (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology 24(4):216–233.spa
dcterms.bibliographicCitationChoi BC, Owen DB. (1990). A study of a new process capability index. Communications in Statistics: Theory and Methods; 19(4):1231–1245.spa
dcterms.bibliographicCitationBoyles, R.A., (1994). Process capability with asymmetric tolerances. Communications in Statistics: Computation and Simulation, 23, pp. 615–643.spa
dcterms.bibliographicCitationChan, L.K., Cheng, S.W. and Spiring, F.A. (1988a). A new measure of process capability: C_pm. Journal of Quality Technology, Vol. 20 No. 3, pp. 162-75.spa
dcterms.bibliographicCitationGunter, B.H. (1989a). The use and abuse of Cpk, part 2. Quality Progress, Vol. 22 No. 3, pp. 108-9.spa
dcterms.bibliographicCitationGunter, B.H. (1989b). The use and abuse of Cpk, part 3. Quality Progress, Vol. 22 No. 5, pp. 79-80.spa
dcterms.bibliographicCitationSomerville, S. & Montgomery, D. (1996). Process capability indices and non-normal distributions. Qual. Eng., 19(2): 305-316.spa
dcterms.bibliographicCitationChen, K.S. and Pearn, W.L. (1997). An application of non-normal process capability indices. Quality and Reliability Engineering International, Vol. 13, pp. 355-60.spa
dcterms.bibliographicCitationZwick, D. (1995). A hybrid method for fitting distributions to data and its use in computing process capability indices. Quality Engineering, Vol. 7 No. 3, pp. 601-13.spa
dcterms.bibliographicCitationSchneider, H., Pruett, J. and Lagrange, C. (1995). Uses of process capability indices in the supplier certification process. Quality Engineering, Vol. 8 No. 2, pp. 225-35.spa
dcterms.bibliographicCitationPearn, W.L. and Chen, K.S. (1995). Estimating process capability indices for non-normal Pearsonian populations. Quality and Reliability Engineering International, Vol. 11 No. 5, pp. 386-8.spa
dcterms.bibliographicCitationChen, K.S. and Pearn, W.L. (1997). An application of non-normal process capability indices. Quality and Reliability Engineering International, Vol. 13, pp. 355-60.spa
dcterms.bibliographicCitationKane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18, 41–52.spa
dcterms.bibliographicCitationKotz, S., Pearn, W.L. and Johnson, N.L. (1993). Some process capability indices are more reliable than one might think. Journal of the Royal Statistical Society, Series C: Applied Statistics, Vol. 42 No.1, pp. 55-62.spa
dcterms.bibliographicCitationPearn, W.L. and Chen, K.S. (1996). A Bayesian-like estimator of Cpk. Communications in Statistics-Simulation and Computation. Vol. 25 No. 2, pp. 321-9.spa
dcterms.bibliographicCitationGuevara, R.D. and Vargas, J.A. (2015). Process capability analysis for nonlinear profiles using depth functions. Quality and Reliability Engineering International, Vol. 31, No. 3, 465–487.spa
dcterms.bibliographicCitationPignatiello JJ, Ramberg J. (1993). Process capability indices: just say no. In Transactions of ASQC 47th Annual Quality Congress; 92–104.spa
dcterms.bibliographicCitationTaam, W., Subbaiah, P. y Liddy, J. W. (1993). A note on multivariate capability indices. Journal of Applied Statistics, 20(3), pp. 339-351.spa
dcterms.bibliographicCitationShahriari, H., Hubele, N.F. y Lawrence, F.P. (1995). A multivariate process capability vector. In: Proceedings of the 4th Industrial Engineering Research Conference, vol. 1, pp. 304–309.spa
dcterms.bibliographicCitationBoyles, R. A. (1997). Using the chi-square statistic to monitor compositional process data. Journal of Applied Statistics 24(5), 589–602.spa
dcterms.bibliographicCitationMontgomery, Douglas C. (2004). Control estadístico de la calidad. Tercera Edición. México.spa
dcterms.bibliographicCitationEuropean Journal of Operational Research.Volume173, Issue 2, 1 September 2006, Pages 637-647.spa
dcterms.bibliographicCitationPearn WL, Kotz S, Johnson NL. (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology; 24(4):216–231.spa
dcterms.bibliographicCitationKane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18, 41–52.spa
dcterms.bibliographicCitationChan, L.K., Cheng, S.W. and Spiring, F.A. (1988b), The robustness of the process capability index Cp to departures from normality. in Matusita, K. (Ed.), Statistical Theory and Data Analysis II, North Holland, Amsterdam, pp. 223-39.spa
dcterms.bibliographicCitationChen S.M. y Hsu NF (1995). The asymptotic distribution of the process capability index C_pmk. Communications in Statistics: Theory and Methods 24(5):1279–1291.spa
dcterms.bibliographicCitationWang, C.H. (2005). Constructing multivariate process capability indices for short-run production. Int. J. Adv. Manuf. Technol. 26, 1306–1311.spa
dcterms.bibliographicCitationTaam, W., Subbaiah, P. y Liddy, J. W. (1993). A note on multivariate capability indices. Journal of Applied Statistics, 20(3), pp. 339-351.spa
dcterms.bibliographicCitationChen, H. (1994). A multivariate process capability index over a rectangular solid zone. Statistica Sinica. 4, 749–758.spa
dcterms.bibliographicCitationShahriari, H., Hubele, N.F. y Lawrence, F.P. (1995). A multivariate process capability vector. In: Proceedings of the 4th Industrial Engineering Research Conference, vol. 1, pp. 304–309.spa
dcterms.bibliographicCitationTaam, W., Subbaiah, P. y Liddy, J. W. (1993). A note on multivariate capability indices. Journal of Applied Statistics, 20(3), pp. 339-351.spa
dcterms.bibliographicCitationShahriari, H., Hubele, N.F. y Lawrence, F.P. (1995). A multivariate process capability vector. In: Proceedings of the 4th Industrial Engineering Research Conference, vol. 1, pp. 304–309.spa
dcterms.bibliographicCitationKane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18, 41–52.spa
dcterms.bibliographicCitationKane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18, 41–52.spa
dcterms.bibliographicCitationChan, L.K., Cheng, S.W. and Spiring, F.A. (1988a). A new measure of process capability: C_pm. Journal of Quality Technology, Vol. 20 No. 3, pp. 162-75.spa
dcterms.bibliographicCitationShinde R.L y Khadse K.G. (2009). Multivariate process capability using principal component analysis. John Wiley & Sons, Ltd. Quality and Reliability Engineering International. Volume 25, Issue 1, pages 69–77.spa
dcterms.bibliographicCitationJuran JM. (1974). Juran’s Quality Control Handbook. McGraw-Hill, 3rd edition.spa
dcterms.bibliographicCitationChan, L.K., Cheng, S.W. and Spiring, F.A. (1988a). A new measure of process capability: Cpm. Journal of Quality Technology, Vol. 20 No. 3, pp. 162-75.spa
dcterms.bibliographicCitationChan, L.K., Cheng, S.W. and Spiring, F.A. (1988b). The robustness of the process capability index Cp to departures from normality. in Matusita, K. (Ed.), Statistical Theory and Data Analysis II, North Holland, Amsterdam, pp. 223-39.spa
dcterms.bibliographicCitationPearn WL, Kotz S y Johnson NL (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology 24(4):216–233spa
dcterms.bibliographicCitationPearn, W. L., Lin, G. H., & Chen, K. S. (1998). Distributional and inferential properties of process accuracy and process precision indices. Communications in Statistics–Theory and Methods, 27, 985–1000. Pearn (2003).spa
dcterms.bibliographicCitationLin, G. H., & Pearn, W. L. (2003). Distributions of the estimated process capability index Cpk. Economic Quality Control, 18, 263–279spa
dcterms.bibliographicCitationVargas A. (2007). Control Estadístico de la Calidad. Universidad del Nacional de Colombia. Bogotá. Unibiblos.spa
dcterms.bibliographicCitationChan, L.K., Cheng, S.W. and Spiring, F.A. (1988b). The robustness of the process capability index Cp to departures from normality. in Matusita, K. (Ed.), Statistical Theory and Data Analysis II, North Holland, Amsterdam, pp. 223-39.spa
dcterms.bibliographicCitationGunter, B.H. (1989a). The use and abuse of Cpk, part 2. Quality Progress, Vol. 22 No. 3, pp. 108-9.spa
dcterms.bibliographicCitationGunter, B.H. (1989b). The use and abuse of Cpk, part 3. Quality Progress, Vol. 22 No. 5, pp. 79-80.spa
dcterms.bibliographicCitationSomerville, S. & Montgomery, D. (1996). Process capability indices and non-normal distributions. Qual. Eng., 19(2): 305-316.spa
dcterms.bibliographicCitationChen, K.S. and Pearn, W.L. (1997). An application of non-normal process capability indices. Quality and Reliability Engineering International, Vol. 13, pp. 355-60spa
dcterms.bibliographicCitationZwick, D. (1995). A hybrid method for fitting distributions to data and its use in computing process capability indices. Quality Engineering, Vol. 7 No. 3, pp. 601-13.spa
dcterms.bibliographicCitationPearn, W.L. and Chen, K.S. (1995). Estimating process capability indices for non-normal Pearsonian populations. Quality and Reliability Engineering International, Vol. 11 No. 5, pp. 386-8.spa
dcterms.bibliographicCitationChen, K.S. and Pearn, W.L. (1997). An application of non-normal process capability indices. Quality and Reliability Engineering International, Vol. 13, pp. 355-60.spa
dcterms.bibliographicCitationTong, L.I. and Chen, J.P. (1998). Lower confidence limits of process capability indices for nonnormal process distributions. International Journal of Quality & Reliability Management, Vol. 15 No. 8/9, pp. 907-19.spa
dcterms.bibliographicCitationClements, J.A. (1989). Process capability calculations for non-normal distributions. Quality Progress. September, pp. 95-100.spa
dcterms.bibliographicCitationVännman K. (1995). A unified approach to capability indices. Statistica Sinica; 5:805–820.spa
dcterms.bibliographicCitationChen, K.S. and Pearn, W.L. (1997). An application of non-normal process capability indices. Quality and Reliability Engineering International, Vol. 13, pp. 355-60.spa
dcterms.bibliographicCitationTong, L.I. and Chen, J.P. (1998). Lower confidence limits of process capability indices for nonnormal process distributions. International Journal of Quality & Reliability Management, Vol. 15 No. 8/9, pp. 907-19.spa
dcterms.bibliographicCitationJann-Pygn Chen, Cherng G. Ding (2000). A new process capability index for non-normal distributions. International Journal of Quality & Reliability Management, Vol. 18 No. 7, pp. 762-72.spa
dcterms.bibliographicCitationChen, J.P. (2000). Reevaluating the process capability indices for non-normal distributions. International Journal of Production Research, Vol. 38 No. 6, pp. 1311-24.spa
dcterms.bibliographicCitationPearn, W.L. and Chen, K.S. (1995). Estimating process capability indices for non-normal Pearsonian populations. Quality and Reliability Engineering International, Vol. 11 No. 5, pp. 386-8.spa
dcterms.bibliographicCitationRamsay J.O, Silverman B.W., (1997). Functional data analysis. Springer.spa
dcterms.bibliographicCitationRamsay J.O, Silverman B.W., (1997). Functional data analysis. Springer.spa
dcterms.bibliographicCitationRamsay, J. O. and Silverman, B. (2005). Functional Data Analysis. New York.spa
dcterms.bibliographicCitationRamsay y Dalzell (1991). Some tools for functional data analysis. Journal Royal Statistical Society, 53:539{572.spa
dcterms.bibliographicCitationLiu, P. & Chen, F., (2006). Process Capability Analysis on Non-normal Process Data Using the Burr XII Distribution. The International Journal of Advanced Manufacturing Technology, 27; 975-984.spa
dcterms.bibliographicCitationLópez-Pintado S, Romo J. (2009). On the concept of depth for functional data. Journal of the American Statistical Association; 104(486):718–734.spa
dcterms.bibliographicCitationLópez-Pintado S, Romo J. (2011). A half-region depth for functional data. Computational Statistics and Data Analysis. 55:1679–1695.spa
dcterms.bibliographicCitationSun Y., Genton M.G. (2011). Functional boxplots. Journal of computational and graphical statistics; 20:316–334.spa
dcterms.bibliographicCitationClements, J.A. (1989). Process capability calculations for non-normal distributions. Quality Progress. September, pp. 95-100.spa
dcterms.bibliographicCitationLópez-Pintado S, Romo J. (2009). On the concept of depth for functional data. Journal of the American Statistical Association; 104(486):718–734.spa
dcterms.bibliographicCitationVargas, A. y Guevara R. (2011). Process Capability Analysis Plot for a Product with Bilateral Specifications. Revista Colombiana de Estadística. Junio 2011, volumen 34, no. 2, pp. 287 a 301.spa
dcterms.bibliographicCitationShinde R.L y Khadse K.G. (2009). Multivariate process capability using principal component analysis. John Wiley & Sons, Ltd. Quality and Reliability Engineering International. Volume 25, Issue 1, pages 69–77.spa
dcterms.bibliographicCitationTaam, W., Subbaiah, P. y Liddy, J. W. (1993). A note on multivariate capability indices. Journal of Applied Statistics, 20(3), pp. 339-351.spa
dcterms.bibliographicCitationTaam, W., Subbaiah, P. y Liddy, J. W. (1993). A note on multivariate capability indices. Journal of Applied Statistics, 20(3), pp. 339-351.spa
dcterms.bibliographicCitationCastagliola P, Maravelakis P, Psarakis S. y Vännman K. (2009). Monitoring capability indices using run rules. Journal of Quality in Maintenance. Engineering. 15(4):358–370.spa
dcterms.bibliographicCitationBothe, D.(1991). A Capability study for an entire product. ASQC Quality Control Transations.spa
dcterms.bibliographicCitationWierda, S.J. (1994). Multivariate statistical process control - recent results and directions for future research. Statistica Neerlandica, vol 48 (2) 147-168.spa
dcterms.bibliographicCitationWang F.K. y Chen. J. (1998). Capability index using principal component analisys. Quality Engineering.spa
dcterms.bibliographicCitationChan, L.K., Cheng, S.W. and Spiring, F.A. (1988b). The robustness of the process capability index Cp to departures from normality. in Matusita, K. (Ed.), Statistical Theory and Data Analysis II, North Holland, Amsterdam, pp. 223-39.spa
dcterms.bibliographicCitationShahriari, H. y Abdollahzadeh, M. (2009). A new multivariate process capability vector. Quality Engineering, 21, 290-299.spa
dcterms.bibliographicCitationCumea G. (2013). Índices de Capacidad Multivariados. Congreso internacional de arquitectura e ingeniería sostenible 2013. México.spa
dcterms.bibliographicCitationClements, J.A. (1989). Process capability calculations for non-normal distributions. Quality Progress. September, pp. 95-100.spa
dcterms.bibliographicCitationBothe, D.(1991). A Capability study for an entire product. ASQC Quality Control Transations.spa
dcterms.bibliographicCitationKrishnamoorthi, K. S. (1990). Capability indices for processes subject to unilateral and positional tolerances. Quality Engineering, 2, 461–471.spa
dcterms.bibliographicCitationDavis, R. D., Kaminsky, F. C., & Saboo, S. (1992). Process capability analysis for process with either a circular or a spherical tolerance zone. Quality Engineering, 5, 41–54.spa
dcterms.bibliographicCitationKarl, D. P., Morisette, J., & Taam, W. (1994). Some applications of a multivariate capability index in geometric dimensioning and tolerancing. Quality Engineering, 6, 649–665.spa
dcterms.bibliographicCitationChen K.S, W. Pearn L. and Lin P.C., (2003). Capability Measures for Processes with Multiple Characteristics. Quality and Reliability Engineering International Qual. Reliab. Engng. Int.; 19:101–110 (DOI: 10.1002/qre.513).spa
dcterms.bibliographicCitationChen K.S, W. Pearn L. and Lin P.C., (2003). Capability Measures for Processes with Multiple Characteristics. Quality and Reliability Engineering International Qual. Reliab. Engng. Int. 2003; 19:101–110 (DOI: 10.1002/qre.513).spa
dcterms.bibliographicCitationBothe, D. R. (2006). Assessing capability for hole location. Quality Engineering, 18,325–331.spa
dcterms.bibliographicCitationShahriari, H. y Abdollahzadeh, M. (2009). A new multivariate process capability vector. Quality Engineering, 21, 290-299.spa
dcterms.bibliographicCitationShahriari, H. y Abdollahzadeh, M. (2009). A new multivariate process capability vector. Quality Engineering, 21, 290-299.spa
dcterms.bibliographicCitationEbadi M, Shahriari H., (2012). A process capability index for simple linear profile. International Journal of Advanced Manufacturing Technology; doi:10.1007/s00170-012-4066-7.spa
dcterms.bibliographicCitationEbadi M, Shahriari H., (2012). A process capability index for simple linear profile. International Journal of Advanced Manufacturing Technology; doi:10.1007/s00170-012-4066-7.spa
dcterms.bibliographicCitationEbadi M, Shahriari H., (2012). A process capability index for simple linear profile. International Journal of Advanced Manufacturing Technology; doi:10.1007/s00170-012-4066-7.spa
dcterms.bibliographicCitationEbadi M, Shahriari H., (2012). A process capability index for simple linear profile. International Journal of Advanced Manufacturing Technology; doi:10.1007/s00170-012-4066-7.spa
dcterms.bibliographicCitationNoorossana, R., Saghaie, A. and Amiri, A. (2011) Statistical Analysis of Prole Monitoring, John Wiley and Sons.spa
dcterms.bibliographicCitationShahriari, H. y Sarafian, M. (2009). Evaluación del proceso - Evaluación capacidad en perfiles lineas, Internacional de Ingeniería Industrial Conferencia, Teherán, Irán.spa
dcterms.bibliographicCitationEbadi, M. y Shahriari, H. (2012). La capacidad de proceso índice para perfiles lineal simple. La Revista Internacional de Manufactura Avanzada y Tecnología,64 ( 5- 8), pp. 857-865.spa
dcterms.bibliographicCitationI. W. Burr, (1973). Parameters for a general system of distribution to match a grid of ?3 a ?4. Commun Stat. 2:1, 1-21.spa
dcterms.bibliographicCitationR. Nemati Keshtelia, R. Baradaran Kazemzadeha, A. Amiri and R. Noorossana. (2014). Developing functional process capability índices for simple linear profile. Scientia Iranica, Sharif University of Technology.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_3248spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.15648/EUA.123
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsÍndices de Capacidadspa
dc.type.driverinfo:eu-repo/semantics/bookspa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaLibrospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por