Mostrar el registro sencillo del ítem
Phytochemical Screening of Callus and Cell Suspensions Cultures of Thevetia peruviana
dc.contributor.author | Mendoza, Dary | |
dc.contributor.other | Arias, Juan Pablo | |
dc.contributor.other | Cuaspud, Olmedo | |
dc.contributor.other | Arias, Mario | |
dc.date.accessioned | 2022-11-15T19:27:09Z | |
dc.date.available | 2022-11-15T19:27:09Z | |
dc.date.issued | 2020-02-13 | |
dc.date.submitted | 2018-12-13 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/815 | |
dc.description.abstract | Thevetia peruviana is an ornamental shrub grown-up in many tropical region of the world. This plant produces secondary metabolites with biological properties of interest for the pharmaceutical industry. The objective was to determine the secondary metabolites profile of callus and cell suspension cultures of T. peruviana and compare them with those from explant (fruit pulp). Extracts in 50% aqueous ethanol and ethyl acetate were prepared. The phytochemical analysis was performed using standard chemical tests and thin layer chromatography. In addition, total phenolic and flavonoids compounds (TPC and TFC), total cardiac glycosides (TCG) and total antioxidant activity (TAA) was determined during the cell suspension growth. Phenolic chemical profile was also analyzed by high performance liquid chromatography (HPLC). Common metabolites (alkaloids, amino acids, antioxidants, cardiac glycosides, leucoanthocyanidins, flavonoids, phenols, sugars and triterpenes) were detected in all samples. The maximum production of extracellular TCG, TPC, TFC and TAA in cells suspensions were at 6-12 days; in contrast, intracellular content was relatively constant during the exponential grown phase (0 to 12-days). HPLC analysis detected one compound with retention time at 11.6 min; this compound was tentatively identified as dihydroquercetin, a flavonoid with anti-cancer properties. These results provide evidence on the utility of the in vitro cell cultures of T. peruviana for valuable pharmaceutical compounds production. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Brazilian Archives of Biology and Technology. | spa |
dc.title | Phytochemical Screening of Callus and Cell Suspensions Cultures of Thevetia peruviana | spa |
dcterms.bibliographicCitation | 1. Bandara V, Weinstein SA, White J, Eddleston M. A review of the natural history, toxinology, diagnosis and clinical management of Nerium oleander (common oleander) and Thevetia peruviana (yellow oleander) poisoning. Toxicon. 2010 Sep;56(3):273-81. doi: 10.1016/j.toxicon.2010.03.026. | spa |
dcterms.bibliographicCitation | 2. Kohls S, Scholz B, Teske J, Zark P, Rullkötter J. Cardiac glycosides from yellow oleander (Thevetia peruviana) seed. Phytochemistry. 2012 Mar;75:114-27. doi: 10.1016/j.phytochem.2011.11.019 | spa |
dcterms.bibliographicCitation | 3. Kohls S, Scholz-Böttcher BM, Teste J, Rullkötter J, Isolation and quantification of six cardiac glycosides from the seeds of Thevetia peruviana provide a basis for toxicological survey. Indian J Biochem Biophys. 2015 Dec;54:1502-10. | spa |
dcterms.bibliographicCitation | 4. Kumar P, Atreya A, Tanuj T. Thevetia peruviana. Wilderness Environ Med. 2015;26:590-1. | spa |
dcterms.bibliographicCitation | 5. Kramer M. Pharmacology and therapeutic use of cardiac glycoside thevetin. Arztl Wochensch. 1955 Feb;10(6):1316. | spa |
dcterms.bibliographicCitation | 6. Hassan MM, Saha AK, Khan SA, Islam A, Mahabub-Uz-Zaman M, Ahmed SSU. Studies on the antidiarrhoeal, antimicrobial and cytotoxic activities of ethanol-extracted leaves of yellow oleander (Thevetia peruviana). Open Vet J. 2011;1(1):28–31. | spa |
dcterms.bibliographicCitation | 7. Dabur R, Gupta A, Mandal TK, Singh DD, Bajpai V, Gurav AM, et al. Antimicrobial activity of some Indian medicinal plants. Afr J Tradit Complement Altern Med. 2007 Feb;4(3):313-8. doi: 10.4314/ajtcam.v4i3.31225. | spa |
dcterms.bibliographicCitation | 8. Ramos-Silva A, Tavares-Carreón F, Figueroa M, De la Torre-Zavala S, Gastelum Arellanez A, Rodríguez-García A, et al. Anticancer potential of Thevetia peruviana fruit methanolic extract. BMC Complement Altern Med. 2017 May;17(1):241. doi: 10.1186/s12906-017-1727-y. | spa |
dcterms.bibliographicCitation | 9. Haldar S, Karmakar I, Chakraborty M, Ahmad D, Haldar PK. Antitumor potential of Thevetia peruviana on Ehrlich’s ascites carcinoma-bearing mice. J Environ Pathol Toxicol Oncol. 2015;34(2):105-13. doi: 10.1615/jenvironpatholtoxicoloncol.2015012017. | spa |
dcterms.bibliographicCitation | 10. Tewtrakul S, Nakamura N, Hattori M, Fujiwara T, Supavita T. Flavanone and flavonol glycosides from the leaves of Thevetia peruviana and their HIV-1 reverse transcriptase and HIV-1 integrase inhibitory activities. Chem Pharm Bull. (Tokyo). 2002 May;50(5):630-5. doi: 10.1248/cpb.50.630. | spa |
dcterms.bibliographicCitation | 11. Ochoa-Villarreal M, Howat S, Hong SM, Jang MO, Jin Y-W, Lee E-K, et al. Plant cell culture strategies for the production of natural products. BMB Rep. 2016 Mar;49(3):149-58. doi: 10.5483/bmbrep.2016.49.3.264. | spa |
dcterms.bibliographicCitation | 12. Karuppusamy S. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plant Res. 2009; 3(13):1222-39. | spa |
dcterms.bibliographicCitation | 13. Shimoda K, Yamanea S, Hirakawa H, Ohta S, Hirata T. Biotransformation of phenolic compounds by the cultured cells of Catharanthus roseus. J Mol Catal B Enzym. 2002 Feb; 16(5-6):275-81. doi: 10.1016/S1381- 1177(01)00073-X. | spa |
dcterms.bibliographicCitation | 14. Schmeda-Hirschmann G, Jordan M, Gerth A, Wilken D. Secondary metabolite content in rhizomes, callus cultures and in vitro regenerated plantlets of Solidago chilensis. Z Naturforsch C. 2005 Jan-Feb;60(1-2):5-10. doi: 10.1515/znc-2005-1-202. | spa |
dcterms.bibliographicCitation | 15. Arias M, Angarita M, Restrepo JM, Caicedo LA, Perea M. Elicitation with methyl-jasmonate stimulates peruvoside production in cell suspention culture of Thevetia peruviana. In vitro Cell Dev Biol Plant. 2010 Jun;46(3):233-8. doi: 10.1007/s11627-009-9249-z. | spa |
dcterms.bibliographicCitation | 16. Rincón-Pérez J, Rodríguez-Hernández L, Ruíz-Valdiviezo VM, Abud-Archila M, Luján-Hidalgo MC, Ruiz-Lau N, González-Mendoza D, Gutiérrez-Miceli FA. Fatty acids profile, phenolic compounds and antioxidant capacity in elicited callus of Thevetia peruviana (Pers.) K. Schum. J Oleo Sci. 2016;65(4):311-8. doi: 10.5650/jos.ess15254. | spa |
dcterms.bibliographicCitation | 17. Arias JP, Zapata K, Rojano B, Arias M. Effect of light wavelength on cell growth, content of phenolic compounds and antioxidant activity in cell suspension cultures of Thevetia peruviana. J Photochem Photobiol B. 2016 Oct;163:87-91. doi: 10.1016/j.jphotobiol.2016.08.014. | spa |
dcterms.bibliographicCitation | 18. Arias JP, Zapata K, Rojano B, Peñuela M, Arias M. Cardiac glycosides, phenolic compounds and antioxidant activity from plant cell suspension cultures of Thevetia peruviana. Rev UDCA actual Divulg Cient. 2017;20(2):353- 62. | spa |
dcterms.bibliographicCitation | 19. Mendoza D, Cuaspud O, Arias JP, Ruiz O, Arias M. Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana. Biotechnol Rep (Amst). 2018 Jul 3;19:e00273. doi: 10.1016/j.btre.2018.e00273. | spa |
dcterms.bibliographicCitation | 20. Sanabria A. Análisis fitoquímico preliminar. Metodología y su aplicación en la evaluación de 40 plantas de la familia Compositeae. In: Facultad de Ciencias, Departamento de Farmacia, Universidad Nacional de Colombia. Bogotá; 1983. | spa |
dcterms.bibliographicCitation | 21. Waldi D. Spray Reagents for Thin-Layer Chromatography. In: Stahl E, editor. Thin-Layer Chromatography. Berlin, Heidelberg: Springer; 1965. p. 483-502. | spa |
dcterms.bibliographicCitation | 22. Zarzycki PK. Chapter 8 - Staining and Derivatization Techniques for Visualization in Planar Chromatography. In: Poole CF, editor. Instrumental Thin-Layer Chromatography: Elsevier; 2014. p. 191-237. | spa |
dcterms.bibliographicCitation | 23. Slinkard K, Singleton VL. Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic. 1977 Jan; 28: 49-55. | spa |
dcterms.bibliographicCitation | 24. Pekal A, Pyrzynska K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Methods. 2014; 7(9):1776-82. doi: 10.1007/s12161-014-9814-x. | spa |
dcterms.bibliographicCitation | 25. Oluwaniyi OO, Ibiyemi SA. Extractability of Thevetia peruviana glycosides with alcohol mixture. Afr J Biotechnol. 2007 Oct;6(18):2166-70. | spa |
dcterms.bibliographicCitation | 26. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applyingan improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999 May;26(9-10):1231-7. doi: 10.1016/s0891- 5849(98)00315-3. | spa |
dcterms.bibliographicCitation | 27. Tu X, Ma S, Gao Z, Wang J, Huang S, Chen W. One-Step Extraction and Hydrolysis of Flavonoid Glycosides in Rape Bee Pollen Based on Soxhlet-Assisted Matrix Solid Phase Dispersion. Phytochem Anal. 2017 Nov;28(6):505-11. doi: 10.1002/pca.2699. | spa |
dcterms.bibliographicCitation | 28. Dr. Duke’s Phytochemical and Ethnobotanical databases. https://phytochem.nal.usda.gov/phytochem/search. | spa |
dcterms.bibliographicCitation | 29. Rahman N, Mahmood R, Rahman H, Haris M. Systematic screening for phytochemicals of various solvent extracts of Thevetia peruviana Schum. Leaves and fruit rind. Int J Pharm Pharm Sci. 2014;6 (8):173-9. | spa |
dcterms.bibliographicCitation | 30. João Matos M, Santana L, Uriarte E, Abreu, OA, Molina E, Guardado E. Coumarins — An Important Class of Phytochemicals. In: Phytochemicals - Isolation, Characterisation and Role in Human Health, Chapter: 5, Publisher: InTech, Editors: Venketeshwer Rao; 2015. p. 113-40. | spa |
dcterms.bibliographicCitation | 31. Wolska KI, Grudniak AM, Fiecek B, Kraczkiewicz-Dowjat A, Kurek A. Antibacterial activity of oleanolic and ursolic acids and their derivatives. Cent Eur J Biol. 2010 Oct;5(5):543-53. doi: 10.2478/s11535-010-0045-x. | spa |
dcterms.bibliographicCitation | 32. Feng Q, Seng Leong W, Liu L, Chan W. Peruvoside, a Cardiac Glycoside, Induced Primitive Myeloid Leukemia Cell Death. Molecules. 2016 Apr;21(4):534. doi: 10.3390/molecules21040534. | spa |
dcterms.bibliographicCitation | 33. Kaushik V, Azad N, Krishnan A, Iyer V. Antitumor effects of naturally occurring cardiac glycosides convallatoxin and peruvoside on human ER+ and triple-negative breast cancers. Cell Death Discov. 2017;3:17009. doi: 10.1038/cddiscovery.2017.9 | spa |
dcterms.bibliographicCitation | 34. Lattanzio V. Phenolic Compounds: Introduction. In: Ramawat K., Mérillon JM, editors. Natural Products. Berlin, Heidelberg: Springer; 2013. p. 1543-80. | spa |
dcterms.bibliographicCitation | 35. Luckner M, Diettrich B. Formation of Cardenolides in Cell and Organ Cultures of Digitalis lanata. In: Neumann KH, Barz W, Reinhard E, editors. Primary and Secondary Metabolism of Plant Cell Cultures. Proceedings in Life Sciences. Berlin, Heidelberg: Springer; 1985. p. 154-65. | spa |
dcterms.bibliographicCitation | 36. Tofighi Z, Ghazi saeidi N, Hadjiakhoondi A, Yassa N. Determination of cardiac glycosides and total phenols in different generations of Securigera securidaca suspension culture. Research Journal of Pharmacognosy (RJP). 2016;3(2):25-31. | spa |
dcterms.bibliographicCitation | 37. Pandey A, Swarnkar V, Pandey T, Srivastava P, Kanojiya S, Mishra DK, et al. Transcriptome and Metabolite analysis reveal candidate genes of the cardiac glycoside biosynthetic pathway from Calotropis procera. Sci Rep. 2016 Oct;6:34464. doi: 10.1038/srep34464. | spa |
dcterms.bibliographicCitation | 38. Sahin G, Verma SK, Gurel E. Calcium and magnesium elimination enhances accumulation of cardenolides in callus cultures of endemic Digitalis species of Turkey. Plant Physiol Biochem. 2013 Dec;73:139-43. doi: 10.1016/j.plaphy.2013.09.007. | spa |
dcterms.bibliographicCitation | 39. Kreis W, Reinhard E. Selective Uptake and Vacuolar Storage of Primary Cardiac Glycosides by Suspensioncultured Digitalis lanata Cells. J Plant Physiol. 1987 Jun; 128(4-5):311-26. doi: 10.1016/S0176-1617(87)80117-7. | spa |
dcterms.bibliographicCitation | 40. Tabata M, Umetani Y, Ooya M, Tanaka S. Glucosylation of phenolic compounds by plant cell cultures. Phytochemistry.1988;27(3):809-13. doi: 10.1016/0031-9422(88)84097-4. | spa |
dcterms.bibliographicCitation | 41. Voigtländer HW, Balsam G. Apigenin-5-methylether a new flavone from Thevetia peruviana. Arch Pharm Ber Dtsch Pharm Ges. 1970;303(10):7827. | spa |
dcterms.bibliographicCitation | 42. Abe F, Iwase Y, Yamauchi T, Yaharaj A, Nohara T. Flavonol sinapoyl glycosides from leaves of Thevetia peruviana. Phytochemistry. 1995 Sep;40(2):577-81. doi: 10.1016/0031-9422(95)00316-Y. | spa |
dcterms.bibliographicCitation | 43. Dixit A, Singh H, Sharma RA, Sharma A. Estimation of antioxidant and antibacterial activity of crude extracts of Thevetia peruviana (Pers.) K. Schum. Int J Pharm. 2015;7:55-9. | spa |
dcterms.bibliographicCitation | 44. Tiukavkina NA, Rulenko IA, Kolesnik IuA. Dihydroquercetina new antioxidant and biologically active food additive. Vopr Pitan. 1997;6:12-5. | spa |
dcterms.bibliographicCitation | 45. Weidmann AE. Dihydroquercetin: More than just an impurity?. Eur J Pharmacol. 2012 Jun;684(1-3):19-26. doi: 10.1016/j.ejphar.2012.03.035. | spa |
dcterms.bibliographicCitation | 46. Oi N, Chen H, Ok Kim M, Lubet RA, Bode AM, Dong Z. Taxifolin suppresses UV-induced skin carcinogenesis by targeting EGFR and PI3-K. Cancer Prev Res (Phila). 2012 Sep;5(9):1103-14. doi: 10.1158/1940-6207.CAPR-11- 0397. | spa |
dcterms.bibliographicCitation | 47. Sakushima A, Nishibe S. Taxifolin 3-arabinoside from Trachelospermum jasminoides var. Pubescens. Phytochemistry. 1988;27(3):948-50. doi: 10.1016/0031-9422(88)84132-3. | spa |
dcterms.bibliographicCitation | 48. Sheu MJ, Chou PY, Cheng HC, Wu CH, Huang GJ, Wang BS, et al. Analgesic and anti-inflammatory activities of a water extract of Trachelospermum jasminoides (Apocynaceae). J Ethnopharmacol. 2009 Nov;126(2):332-8. doi: 10.1016/j.jep.2009.08.019. | spa |
dcterms.bibliographicCitation | 49. Sun YJ, He JM, Kong JQ. Characterization of two flavonol synthases with iron-independent flavanone 3- hydroxylase activity from Ornithogalum caudatum Jacq. BMC Plant Biol. 2019 May;19(1):195. doi: 10.1186/s12870-019-1787-x. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1590/1678-4324-2020180735 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | Thevetia peruviana; in vitro cell cultures; secondary metabolites; dihydroquercetin; HPLC. | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Química | spa |
dc.publisher.sede | Sede Norte | spa |